Algebraic topology - Homework 1

November 06, 2024

 (\star) = not for submission, but make sure you understand how to do it $(\star\star)$ = not for submission, a bonus question which I find interesting Questions (1) and (2) are not for submission, but they are good for some experience with category theory.

- (1) (\star) **Isomorphisms.** Let \mathscr{C} and \mathscr{D} be categories.
 - (a) Let $F: \mathscr{C} \to \mathscr{D}$ be a functor and $f: X \to Y \in \mathscr{C}$ a morphism. Show that if f is an isomorphism, then F(f) is also an isomorphism.
 - (b) Let $F, G: \mathscr{C} \to \mathscr{D}$ be functors and $\alpha: F \to G$ a natural transformation. Show that if α is an isomorphism in Fun $(\mathscr{C}, \mathscr{D})$, then $\alpha_X: F(X) \to G(X)$ is an isomorphism for every X.
 - (c) Show that the converse of Exercise 1b also holds: if $\alpha_X \colon F(X) \to G(X)$ is an isomorphism for every X, then α is an isomorphism in Fun $(\mathscr{C}, \mathscr{D})$. Such natural transformations are called *natural isomorphisms*.

(2) (\star) Classifying categories of groups.

- (a) Let G be a group. Define the category BG as having one object *, with $\operatorname{Hom}_{BG}(*,*) = G$ and composition is given by group multiplication. Show that for two groups G, H functors $BG \to BH$ are in bijection with group homomorphisms $G \to H$.
- (b) Let G, H be groups. Let $\varphi, \psi: G \to H$ be two homomorphisms (thought of as functors $BG \to BH$). What are the natural transformations $\varphi \to \psi$?
- (c) Give an explicit description of functors $BG \to Set$, and of natural transformations between two such functors.
- (3) Semisimplicial sets. In the following question we will show that the description of semisimplicial sets from the lecture agrees with the categorical one, based on presenting the category $s\Delta$ with "generators and relations":
 - (a) Let $\delta_i^{[n]}: [n-1] \to [n], 0 \le i \le n$ be the strictly increasing function defined by skipping *i*. Prove that any strictly increasing $\alpha: [m] \to [n]$ admits a unique decomposition:

$$\alpha = \delta_{i_k}^{[n]} \circ \delta_{i_{k-1}}^{[n-1]} \circ \dots \circ \delta_{i_2}^{[n-k+2]} \circ \delta_{i_1}^{[n-k+1]}$$

with $i_1 < i_2 < \cdots < i_k$.

- (b) Prove that the category $\operatorname{Set}_{s\Delta} := \operatorname{Fun}(s\Delta^{\operatorname{op}}, \operatorname{Set})$ is isomorphic to the category SSS defined in class.¹ Namely, exhibit a bijection between the objects and the morphisms of the two categories that respects compositions and identity.
- (c) Given $X \in \operatorname{Set}_{s\Delta}$, prove that the geometric realization |X| is homeomorphic to the topological space

$$\bigsqcup_{n>0} (X_n \times \Delta^n) / (\sigma, \alpha(t)) \sim (\alpha^* \sigma, t)$$

where $\sigma \in X_n$, $\alpha \colon [k] \to [n]$, and $t = (t_0, \ldots, t_k) \in \Delta^k$, where we define

$$\alpha(t_0,\ldots,t_k) = t_0 e_{\alpha(0)} + \cdots + t_k e_{\alpha(k)}$$

and the function α^* is the value of the functor X on the morphism α .

(d) Given $X \in \operatorname{Set}_{s\Delta}$, prove that the semisimplicial complex $C^{\Delta}_{\bullet}(X)$ is a chain complex. Namely, show that $\partial_n \circ \partial_{n+1} = 0$.

(4) Functors.

- (a) Show that |-|: Set_s $\Delta \rightarrow$ Top extends to a functor.
- (b) Show that Sing: Top $\rightarrow \operatorname{Set}_{s\Delta}$ extends to a functor.
- (c) For every $X \in \operatorname{Set}_{s\Delta}$ and $Y \in \operatorname{Top}$, construct a bijection

$$\hom_{\operatorname{Top}}(|X|, Y) \simeq \hom_{\operatorname{Set}_{s\Delta}}(X, \operatorname{Sing}(Y))$$

(d) (\star) Contemplate the fact that this bijection is natural in X and Y. This exhibits |-| and Sing as *adjoint functors*.

(5) Simplicial Homology.

- (a) For $n \ge 0$, let $\vec{\Delta}^n \in \operatorname{Set}_{s\Delta}$ denote the following semisimplicial set:
 - For $k \ge 0$, the k-simplicies are $\vec{\Delta}_k^n = \hom_{s\Delta}([k], [n])$

 α

• For $\alpha \colon [k] \to [k'] \in s\Delta$, the corresponding function $\alpha^* \colon \vec{\Delta}_{k'}^n \to \vec{\Delta}_k^n$ is given by

*:
$$\hom_{\mathbf{s}\Delta}([k'], [n]) \to \hom_{\mathbf{s}\Delta}([k], [n])$$

 $\beta \mapsto \beta \circ \alpha$

Prove that $|\vec{\Delta}^n|$ is homeomorphic to Δ^n and compute the simplicial homology of $\vec{\Delta}^n$.

(b) Let $\partial \vec{\Delta}^n$ denote the same semisimplicial set as $\vec{\Delta}^n$, except we remove a single *n*-simplex

$$\partial \tilde{\Delta}_n^n = \hom_{\mathbf{s}\Delta}([n], [n]) \setminus {\mathrm{id}_{[n]}}.$$

Prove that $|\partial \vec{\Delta}^n|$ is homeomorphic to S^n , and compute the simplicial homology of $\partial \vec{\Delta}^n$.

(c) Consider the semisimplicial set $X \in \text{Set}_{s\Delta}$ defined by the diagram below

¹Generally the more correct notion is equivalence of categories, but in this case they are even isomorphic

with the two horizontal and vertical lines identified according to arrows. Prove that |X| is homeomorphic to the *real projective plane* $\mathbb{RP}^2 := S^2/-v \sim v$, and compute the simplicial homology of X.

(d) $(\star\star)$ Define a semisimplicial space whose geometric realization is homeomorphic to \mathbb{RP}^n , and compute its homology.

(6) Homotopy.

- (a) Construct the category hTop whose objects are topological spaces and whose morphisms are equivalence classes of continuous maps up to homotopy. Namely, you need to show that composition is well-defined.
- (b) Define explicitly a homotopy equivalence between the following two subspaces of \mathbb{R}^2 :

$$X = S^{1} \cup (\{0\} \times [-1,1]) \qquad Y = (S^{1} + (-2,0)) \cup ([-1,1] \times \{0\}) \cup (S^{1} + (2,0))$$