Algebraic topology - Homework 1

November 06, 2024

 (\star) = not for submission, but make sure you understand how to do it

 $(\star \star)$ = not for submission, a bonus question which I find interesting

Questions (1) and (2) are not for submission, but they are good for some experience with category theory.

- (1) (\star) **Isomorphisms.** Let $\mathscr C$ and $\mathscr D$ be categories.
	- (a) Let $F: \mathscr{C} \to \mathscr{D}$ be a functor and $f: X \to Y \in \mathscr{C}$ a morphism. Show that if f is an isomorphism, then $F(f)$ is also an isomorphism.
	- (b) Let $F, G: \mathscr{C} \to \mathscr{D}$ be functors and $\alpha: F \to G$ a natural transformation. Show that if α is an isomorphism in $Fun(\mathscr{C}, \mathscr{D})$, then $\alpha_X : F(X) \to G(X)$ is an isomorphism for every *X*.
	- (c) Show that the converse of [Exercise 1b](#page-0-0) also holds: if $\alpha_X : F(X) \to G(X)$ is an isomorphism for every X, then α is an isomorphism in Fun(\mathscr{C}, \mathscr{D}). Such natural transformations are called *natural isomorphisms*.

(2) (*⋆*) **Classifying categories of groups.**

- (a) Let *G* be a group. Define the category B*G* as having one object $*$, with $\text{Hom}_{BG}(*,*) = G$ and composition is given by group multiplication. Show that for two groups *G, H* functors $BG \rightarrow BH$ are in bijection with group homomorphisms $G \rightarrow H$.
- (b) Let *G*, *H* be groups. Let $\varphi, \psi: G \to H$ be two homomorphisms (thought of as functors $BG \rightarrow BH$). What are the natural transformations $\varphi \rightarrow \psi$?
- (c) Give an explicit description of functors $BG \rightarrow Set$, and of natural transformations between two such functors.
- (3) **Semisimplicial sets.** In the following question we will show that the description of semisimplicial sets from the lecture agrees with the categorical one, based on presenting the category s**∆** with "generators and relations":
	- (a) Let $\delta_i^{[n]}$: $[n-1] \to [n], 0 \le i \le n$ be the strictly increasing function defined by skipping *i*. Prove that any strictly increasing α : $[m] \to [n]$ admits a unique decomposition:

$$
\alpha = \delta_{i_k}^{[n]} \circ \delta_{i_{k-1}}^{[n-1]} \circ \cdots \circ \delta_{i_2}^{[n-k+2]} \circ \delta_{i_1}^{[n-k+1]}
$$

with $i_1 < i_2 < \cdots < i_k$.

- (b) Prove that the category $Set_{s\Delta} := \text{Fun}(s\Delta^{\text{op}}, \text{Set})$ is isomorphic to the category SSS defined in class.^{[1](#page-1-0)} Namely, exhibit a bijection between the objects and the morphisms of the two categories that respects compositions and identity.
- (c) Given *X* ∈ Sets**[∆]**, prove that the geometric realization |*X*| is homeomorphic to the topological space

$$
\bigcup_{n>0} (X_n \times \Delta^n) \big/ (\sigma, \alpha(t)) \sim (\alpha^* \sigma, t)
$$

where $\sigma \in X_n$, α : $[k] \to [n]$, and $t = (t_0, \ldots, t_k) \in \Delta^k$, where we define

$$
\alpha(t_0,\ldots,t_k)=t_0e_{\alpha(0)}+\cdots+t_ke_{\alpha(k)}
$$

and the function α^* is the value of the functor *X* on the morphism α .

(d) Given $X \in \text{Set}_{s\Delta}$, prove that the semisimplicial complex $C_{\bullet}^{\Delta}(X)$ is a chain complex. Namely, show that $\partial_n \circ \partial_{n+1} = 0$.

(4) **Functors.**

- (a) Show that $|-|: \text{Set}_{s\Delta} \to \text{Top}$ extends to a functor.
- (b) Show that Sing: $Top \rightarrow Set_{s\Delta}$ extends to a functor.
- (c) For every $X \in \text{Set}_{s\Delta}$ and $Y \in \text{Top}$, construct a bijection

$$
\hom_{\operatorname{Top}}(|X|, Y) \simeq \hom_{\operatorname{Set}_{\operatorname{sa}}}(X, \operatorname{Sing}(Y))
$$

(d) (\star) Contemplate the fact that this bijection is natural in *X* and *Y*. This exhibits $|-|$ and Sing as *[adjoint functors](https://en.wikipedia.org/wiki/Adjoint_functors)*.

(5) **Simplicial Homology.**

- (a) For $n \geq 0$, let $\vec{\Delta}^n \in \text{Set}_{s\Delta}$ denote the following semisimplicial set:
	- For $k \geq 0$, the *k*-simplicies are $\vec{\Delta}_k^n = \hom_{s\mathbf{\Delta}}([k],[n])$

α

• For $\alpha: [k] \to [k'] \in s\Delta$, the corresponding function $\alpha^*: \vec{\Delta}_{k'}^n \to \vec{\Delta}_{k}^n$ is given by

^{*}:
$$
\hom_{s\mathbf{\Delta}}([k'], [n]) \to \hom_{s\mathbf{\Delta}}([k], [n])
$$

 $\beta \mapsto \beta \circ \alpha$

Prove that $|\vec{\Delta}^n|$ is homeomorphic to Δ^n and compute the simplicial homology of $\vec{\Delta}^n$.

(b) Let $\partial \vec{\Delta}^n$ denote the same semisimplicial set as $\vec{\Delta}^n$, except we remove a single *n*-simplex

$$
\partial \vec{\Delta}_n^n = \hom_{s\mathbf{\Delta}}([n],[n]) \setminus {\text{id}_{[n]}}.
$$

Prove that $|\partial \vec{\Delta}^n|$ is homeomorphic to S^n , and compute the simplicial homology of $\partial \vec{\Delta}^n$.

(c) Consider the semisimplicial set $X \in \text{Set}_{s\Delta}$ defined by the diagram below

¹Generally the more correct notion is equivalence of categories, but in this case they are even isomorphic

with the two horizontal and vertical lines identified according to arrows. Prove that |*X*| is homeomorphic to the *real projective plane* $\mathbb{RP}^2 := \frac{S^2}{-\nu} \sim v$, and compute the simplicial homology of *X*.

(d) $(\star \star)$ Define a semisimplicial space whose geometric realization is homeomorphic to \mathbb{RP}^n , and compute its homology.

(6) **Homotopy.**

- (a) Construct the category hTop whose objects are topological spaces and whose morphisms are equivalence classes of continuous maps up to homotopy. Namely, you need to show that composition is well-defined.
- (b) Define explicitly a homotopy equivalence between the following two subspaces of \mathbb{R}^2 :

$$
X = S1 \cup (\{0\} \times [-1,1]) \qquad Y = (S1 + (-2,0)) \cup ([-1,1] \times \{0\}) \cup (S1 + (2,0))
$$