Algebraic topology - Homework 3

November 20, 2024

 (\star) = not for submission, but make sure you understand how to do it $(\star\star)$ = not for submission, a bonus question which I find interesting

- (1) **Reduced homology** Let $\emptyset \neq X \in \operatorname{Set}_{s\Delta}$, and suppose $\operatorname{H}_{0}^{\Delta}(X) \simeq \mathbb{Z}^{r}$. The augmentation homomorphism $\epsilon \colon \operatorname{C}_{0}^{\Delta}(X) \to \mathbb{Z}$ was defined as $\epsilon(\sum_{i} n_{i}x_{i}) = \sum_{i} n_{i}$.
 - (a) Prove that $\widetilde{C}^{\Delta}_{\bullet}(X)$, which is obtained by augmenting $C^{\Delta}_{\bullet}(X)$ with ϵ ,

 $\ldots \mathrm{C}_2^\Delta(X) \xrightarrow{\partial_2} \mathrm{C}_1^\Delta(X) \xrightarrow{\partial_1} \mathrm{C}_0^\Delta(X) \xrightarrow{\epsilon} \mathbb{Z} \to 0 \to 0 \ldots$

is a chain complex, and show that reduced simplicial homology $\widetilde{\mathrm{H}}_n^\Delta(X):=\mathrm{H}_n(\widetilde{\mathrm{C}}^\Delta_\bullet(X))$ satisfies

$$\widetilde{\mathrm{H}}_n^{\Delta}(X) \simeq \begin{cases} \mathrm{H}_n^{\Delta}(X) & n \neq 0 \\ \mathbb{Z}^{r-1} & n = 0. \end{cases}$$

- (b) (**) Show that the isomorphism $\widetilde{H}_0^{\Delta}(X) \oplus \mathbb{Z} \simeq H_0^{\Delta}(X)$ cannot be realized as a natural isomorphism of functors $\operatorname{Set}_{s\Delta} \to \operatorname{Ab}$.
- (c) Given $\emptyset \neq X \in \text{Top}$, define reduced singular homology as $\widetilde{H}_n^{\text{Sing}}(X) := \widetilde{H}_n^{\Delta}(\text{Sing}(X))$. Show that reduced singular homology satisfies Mayer-Vietoris: given an open covering $X = U \cup V$ with $U \cap V \neq \emptyset$, there is a long exact sequence of reduced homology:

$$\begin{split} \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(U \cap V) & \longrightarrow \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(U) \oplus \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(V) \longrightarrow \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(X) \\ & \overset{d}{\underset{n-1}{\overset{\mathrm{d}}{\longleftarrow}}} \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(U \cap V) & \overleftarrow{\to} \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(V) \oplus \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(V) \longrightarrow \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(X) \\ & \overset{d}{\underset{\ldots}{\overset{d}{\longleftarrow}}} \\ & \overset{d}{\underset{\vdots}{\longleftarrow}} \end{split}$$

$$\widetilde{\mathrm{H}}_{0}^{\mathrm{Sing}}(U \cap V) \longrightarrow \widetilde{\mathrm{H}}_{0}^{\mathrm{Sing}}(U) \oplus \widetilde{\mathrm{H}}_{0}^{\mathrm{Sing}}(V) \longrightarrow \widetilde{\mathrm{H}}_{0}^{\mathrm{Sing}}(X) \longrightarrow 0$$

- (2) Mayer Vietoris. In both parts, convince yourself that the construction on the left produces the space on the right.
 - (a) Compute the homology of the *Klein bottle*, which is given by a square with its edges glued as follows:

(b) Compute the homology of the *surface of genus* 2, which is an octagon with its edges identified as follows:

(3) **Homology of a tower.** Given an infinite sequence of Abelian groups $A_0 \xrightarrow{f_0} A_1 \xrightarrow{f_1} \ldots$, define its *sequential colimit* as the disjoint union of A_i where we identify every $a \in A_i$ with its image $f_i(a) \in A_{i+1}$

$$\varinjlim_{i} A_i := \bigsqcup_{i} A_i / \forall a \in A_i, \ a \sim f_i(a).$$

To define multiplication, consider $[a], [b] \in \lim_{i \to i} A_i$ where $a \in A_k$ and $b \in A_n$. By applying f_i enough times on a or b we may assume n = k, and then we define $[a] \cdot [b] = [a \cdot b]$.

(a) (\star) Verify that $\varinjlim_i A_i$ is a well-defined Abelian group, and show that it is the universal Abelian group with maps from the sequence

In particular, if $f_i: A_i \to A_{i+1}$ are inclusions of subgroups $A_i \leq A_{i+1}$, show that $\varinjlim_i A_i \simeq \bigcup_i A_i$.

(b) Given a tower of chain complexes $C^0_{\bullet} \leq C^1_{\bullet} \leq C^2_{\bullet} \leq \ldots$, prove that

$$\mathrm{H}_n(\bigcup_i C^i_{\bullet}) \simeq \varinjlim_i \mathrm{H}_n(C^i_{\bullet}).$$

Deduce that if $X \in$ Top has a tower of open subsets $U_0 \subseteq U_1 \subseteq \cdots \subseteq X$ such that $X = \bigcup_i U_i$, then

$$\operatorname{H}_{n}^{\operatorname{Sing}}(X) \simeq \varinjlim_{i} \operatorname{H}_{n}^{\operatorname{Sing}}(U_{i}).$$

Note that this sequential colimit will generally not be a union.

(c) Compute the singular homology of the infinite dimensional sphere:

$$S^{\infty} := \left\{ x \in \mathbb{R}^{\mathbb{N}} \mid \sum_{i=1}^{X_i = 0 \text{ for all but finitely many } i} \sum_{i=1}^{X_i = 1} \right\} \subseteq \mathbb{R}^{\mathbb{N}}$$

(d) Prove that S^{∞} is contractible.

(4) Chain homotopy.

(a) Let f_i, g_i: Aⁱ_• → Bⁱ_• be chain-homotopic maps f_i ~ g_i for i = 0, 1. Prove that:
i. If B⁰_• = A¹_•, then f₁ ∘ f₀ ~ g₁ ∘ g₀.
ii. If A⁰_• = A¹_• and B⁰_• = B¹_•, then f₀ + f₁ ~ g₀ + g₁.

Deduce that there is a category hCh of chain complexes with equivalence classes of chain maps up to chain homotopy, and that homology factors as a functor $H_n : hCh \to Ab$.

(b) Given $X \in$ Top, construct a chain homotopy between the *r*-th barycentric subdivision and the identity of $C_{\bullet}^{\text{Sing}}(X)$,

$$S^r \sim id: C^{Sing}_{\bullet}(X) \to C^{Sing}_{\bullet}(X).$$