Algebraic topology - Homework 4

November 27, 2024

 (\star) = not for submission, but make sure you understand how to do it $(\star\star)$ = not for submission, a bonus question which I find interesting

(1) **Homotopy invariance of degree.**

- (a) Let $O: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ be an orthogonal linear transformation. In particular, O restricts to a continuous function on the unit sphere. Prove that $\deg(O|_{S^n}) = \det(O)$.
- (b) Suppose a continuous map $f: S^n \to S^n$ is not surjective. Prove that $\deg(f) = 0$.
- (c) Suppose a continuous map $f: S^n \to S^n$ has no fixed points. Prove that $deg(f)$ $(-1)^{n+1}$.
- (2) **Real projective spaces.** For $n > 1$, define the *n*-dimensional real projective space as the quotient $\mathbb{R}\mathbb{P}^n = S^n/(-x \sim x)$, and denote by $q: S^n \to \mathbb{R}\mathbb{P}^n$ the quotient map. It is enough to consider only the upper half sphere, which implies that \mathbb{RP}^n is homeomorphic to D^n where we identify antipodal points on the boundary S^{n-1} . This gives us the following inductive definition:

- (a) Calculate the singular homology of \mathbb{RP}^n , and describe the map induced by the quotient $q_*: \mathrm{H}^{\mathrm{Sing}}_{\bullet}(S^n) \to \mathrm{H}^{\mathrm{Sing}}_{\bullet}(\mathbb{R}\mathbb{P}^n).$
- (b) (\star) Deduce that there exists a homeomorphism $\mathbb{RP}^n \simeq S^n$ only when $n = 1$.
- (c) Suppose $f: S^n \to S^n$ is an even map, meaning that $f(-x) = f(x)$ for all $x \in S^n$. Prove that $deg(f) = 0$ when *n* is even and $deg(f)$ is even when *n* is odd.
- (d) $(\star \star)$ When *n* is odd, show that there exist an even map $f: S^n \to S^n$ of an arbitrary even degree (start with degree 2).
- (3) **Local degree.** In this exercise, we will learn how to find the degree for a general class of maps. As a warm-up, we will start with the special case of sums of maps.
	- (a) Denote by $E \subseteq S^n$ the equator, and note that $S^n/E \simeq S^n \vee S^n$. Given pointed maps $f, g: S^n \to S^n$, define their sum as the composition

$$
f + g \colon S^n \to S^n / E \xrightarrow{\sim} S^n \vee S^n \xrightarrow{f \vee g} S^n
$$

where the first map is the quotient and the third map is induced from *f* and *g* by the universal property of coproducts. Prove that $\deg(f+g) = \deg(f) + \deg(g)$.

(b) Let $f: S^n \to S^n$, and let $x \in U \subseteq S^n$ such that $\forall x' \in U - x$, $f(x') \neq f(x)$. Consider the following composition:

$$
H_n^{\text{Sing}}(S^n) \xrightarrow{\sim} H_n^{\text{Sing}}(S^n, S^n - x) \xrightarrow{\sim} H_n^{\text{Sing}}(U, U - x)
$$

$$
\downarrow_{f^*}
$$

$$
H_n^{\text{Sing}}(S^n, S^n - f(x)) \xrightarrow{\sim} H_n^{\text{Sing}}(S^n)
$$

where the isomorphisms come from the exact sequence of a pair and excision. Fixing an isomorphism $H_n^{\text{Sing}}(S^n) \simeq \mathbb{Z}$, this composition becomes multiplication by some integer called the *local degree* of *f* at *x*, written $\deg(f|x)$. Now suppose $y \in S^n$ has a finite pre-image $f^{-1}(y) = \{x_1, \ldots, x_k\}$, prove that

$$
\deg(f) = \sum_{i=1}^{k} \deg(f|x_i).
$$

- (c) $(\star \star)$ Let $p \in \mathbb{C}[x]$ be a polynomial of degree *d*, *p* induces a map on the one point compactification (Riemann sphere) $\bar{p}: S^2 \to S^2$. Show that $\deg(\bar{p}) = d$.
- (4) **Division algebras.** An *algebra* structure on \mathbb{R}^n is a bilinear multiplication map $V \times V \to V$. An algebra is further a *division algebra* if for every $a, b \in \mathbb{R}^n$ with $a \neq 0$, the equations $ax = b$ and $xa = b$ have solutions.
	- (a) Show that if *M* is a compact *n*-manifold and *N* is a connected *n*-manifold, then any embedding $M \hookrightarrow N$ is a homeomorphism.
	- (b) Suppose we have a commutative division algebra structure on \mathbb{R}^n with a multiplicative unit. Prove that $n \leq 2$. (**Hint:** consider the even function $\frac{x^2}{||x^2||}$: $S^{n-1} \to S^{n-1}$).
	- (c) Prove that the only finite dimensional commutative division algebras over $\mathbb R$ with a multiplicative unit are R and C.