Algebraic topology - Homework 4

November 27, 2024

 (\star) = not for submission, but make sure you understand how to do it $(\star\star)$ = not for submission, a bonus question which I find interesting

(1) Homotopy invariance of degree.

- (a) Let $O : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ be an orthogonal linear transformation. In particular, O restricts to a continuous function on the unit sphere. Prove that $\deg(O|_{S^n}) = \det(O)$.
- (b) Suppose a continuous map $f: S^n \to S^n$ is not surjective. Prove that $\deg(f) = 0$.
- (c) Suppose a continuous map $f: S^n \to S^n$ has no fixed points. Prove that $\deg(f) = (-1)^{n+1}$.
- (2) **Real projective spaces.** For $n \ge 1$, define the *n*-dimensional real projective space as the quotient $\mathbb{RP}^n = S^n/(-x \sim x)$, and denote by $q: S^n \to \mathbb{RP}^n$ the quotient map. It is enough to consider only the upper half sphere, which implies that \mathbb{RP}^n is homeomorphic to D^n where we identify antipodal points on the boundary S^{n-1} . This gives us the following inductive definition:

- (a) Calculate the singular homology of \mathbb{RP}^n , and describe the map induced by the quotient $q_* \colon \mathrm{H}^{\mathrm{Sing}}_{\bullet}(S^n) \to \mathrm{H}^{\mathrm{Sing}}_{\bullet}(\mathbb{RP}^n).$
- (b) (*) Deduce that there exists a homeomorphism $\mathbb{RP}^n \simeq S^n$ only when n = 1.
- (c) Suppose $f: S^n \to S^n$ is an even map, meaning that f(-x) = f(x) for all $x \in S^n$. Prove that $\deg(f) = 0$ when n is even and $\deg(f)$ is even when n is odd.
- (d) $(\star\star)$ When n is odd, show that there exist an even map $f: S^n \to S^n$ of an arbitrary even degree (start with degree 2).
- (3) **Local degree.** In this exercise, we will learn how to find the degree for a general class of maps. As a warm-up, we will start with the special case of sums of maps.
 - (a) Denote by $E \subseteq S^n$ the equator, and note that $S^n/E \simeq S^n \vee S^n$. Given pointed maps $f, g: S^n \to S^n$, define their sum as the composition

$$f+g\colon S^n\to S^n/E\xrightarrow{\sim} S^n\vee S^n\xrightarrow{f\vee g}S^n$$

where the first map is the quotient and the third map is induced from f and g by the universal property of coproducts. Prove that $\deg(f+g) = \deg(f) + \deg(g)$.

(b) Let $f: S^n \to S^n$, and let $x \in U \subseteq S^n$ such that $\forall x' \in U - x$, $f(x') \neq f(x)$. Consider the following composition:

where the isomorphisms come from the exact sequence of a pair and excision. Fixing an isomorphism $\mathrm{H}_{n}^{\mathrm{Sing}}(S^{n}) \simeq \mathbb{Z}$, this composition becomes multiplication by some integer called the *local degree* of f at x, written $\mathrm{deg}(f|x)$. Now suppose $y \in S^{n}$ has a finite pre-image $f^{-1}(y) = \{x_{1}, \ldots, x_{k}\}$, prove that

$$\deg(f) = \sum_{i=1}^{k} \deg(f|x_i)$$

- (c) $(\star\star)$ Let $p \in \mathbb{C}[x]$ be a polynomial of degree d, p induces a map on the one point compactification (Riemann sphere) $\overline{p} \colon S^2 \to S^2$. Show that $\deg(\overline{p}) = d$.
- (4) **Division algebras.** An algebra structure on \mathbb{R}^n is a bilinear multiplication map $V \times V \to V$. An algebra is further a *division algebra* if for every $a, b \in \mathbb{R}^n$ with $a \neq 0$, the equations ax = b and xa = b have solutions.
 - (a) Show that if M is a compact n-manifold and N is a connected n-manifold, then any embedding $M \hookrightarrow N$ is a homeomorphism.
 - (b) Suppose we have a commutative division algebra structure on \mathbb{R}^n with a multiplicative unit. Prove that $n \leq 2$. (**Hint:** consider the even function $\frac{x^2}{||x^2||} \colon S^{n-1} \to S^{n-1}$).
 - (c) Prove that the only finite dimensional commutative division algebras over \mathbb{R} with a multiplicative unit are \mathbb{R} and \mathbb{C} .