Algebraic topology - Homework 7

December 18, 2024

 (\star) = not for submission, but make sure you understand how to do it $(\star\star)$ = not for submission, a bonus question which I find interesting

(1) **Bicomplexes.**

(a) The five lemma: Consider a commutative diagram of Abelian groups

A_1	$\rightarrow B_1$ —	$\rightarrow C_1$ —	$\rightarrow D_1$ —	$\rightarrow E_1$
α	β	γ	δ	ϵ
A_0 —	$\rightarrow \overset{\mathbf{v}}{B_0}$ —	$\rightarrow \overset{\bullet}{C_0}$ —	$\rightarrow D_0 -$	$\rightarrow \stackrel{\sim}{E_0}$

and assume that the rows are exact, α is surjective, ϵ is injective and β , δ are isomorphisms. Prove using spectral sequences that γ is an isomorphism.

(b) The $k \times k$ lemma: Consider a commutative diagram of Abelian groups

and assume that every row except the first $A_{\bullet,0}$, as well as every column except the first $A_{0,\bullet}$, are exact. Prove using spectral sequences that $H_n(A_{\bullet,0}) \simeq H_n(A_{0,\bullet})$.

- (2) **Product and the fundamental group.** Let X, Y be pointed spaces, pointed by $x_0 \in X$ and $y_0 \in Y$.
 - (a) Prove that $\pi_1(X \times Y, (x_0, y_0)) \simeq \pi_1(X, x_0) \times \pi_1(Y, y_0)$ (**Hint:** the universal property of the product¹).
 - (b) From the above isomorphism, it follows that a loop in $X \times \{y_0\}$ and a loop in $\{x_0\} \times Y$ represent commuting elements in $\pi_1(X \times Y, (x_0, y_0))$. Construct an explicit homotopy demonstrating this.
- (3) Conjugation and the fundamental group. Let X be a space with $x_0 \in X$.
 - (a) Denote by $[S^1, X]$ the set of homotopy classes of (non-pointed) maps $S^1 \to X$, and consider the function $\pi_1(X, x_0) \to [S^1, X]$. Show that this function factors as an injection through conjugacy classes $\pi_1(X, x_0)^{\operatorname{conj}} \hookrightarrow [S^1, X]$, which is bijective if X is path connected.
 - (b) Let $f_t: X \to X$ be a homotopy between $f_0 = f_1 = \mathrm{id}_X$, and consider the loop $f_t(x_0): I \to X$. Prove that $[f_t(x_0)]$ belongs to the center of $\pi_1(X, x_0)$.
- (4) Free product.
 - (a) Given a set S and a subset $R \subset \langle S \rangle$, denote $\langle S | R \rangle = \langle S \rangle / N(R)$ where N(R) is the normal closure of R. Prove that $\langle S_1 | R_1 \rangle * \langle S_2 | R_2 \rangle = \langle S_1 \sqcup S_2 | R_1 \sqcup R_2 \rangle$.
 - (b) Describe explicitly the pushouts in Grp, and prove that they all exist. Such pushouts are called *amalgamated* free products, and are denoted $G *_H K$.
 - (c) Prove that Abelaniztion $(-)^{ab}$: Grp \rightarrow Ab commutes with coproducts and pushouts.
 - (d) Let $F_2 = \langle \{a, b\} \rangle$, prove that the commutator subgroup $[F_2, F_2]$ is not finitely generated.

¹ is the universal property of the coproduct in the opposite category.