Algebraic topology - Homework 9

January 2, 2025

 (\star) = not for submission, but make sure you understand how to do it $(\star\star)$ = not for submission, a bonus question which I find interesting

(1) Equivalence of categories.

- (a) (*) A functor $F: \mathscr{C} \to \mathscr{D}$ is an equivalence of categories if and only if F is:
 - i. Essentially surjective: for every $Y \in \mathscr{D}$, there exists $X \in \mathscr{C}$ such that $F(X) \simeq Y$.
 - ii. Faithful: For every $X, Y \in \mathscr{C}$, $\hom_{\mathscr{C}}(X, Y) \to \hom_{\mathscr{D}}(F(X), F(Y))$ is injective.
 - iii. Full: For every $X, Y \in \mathcal{C}$, $\hom_{\mathscr{C}}(X, Y) \to \hom_{\mathscr{D}}(F(X), F(Y))$ is surjective.

The "if" direction uses the axiom of choice to construct an inverse.

- (b) Let $\operatorname{Vect}_k^{\operatorname{fin}}$ be the category of finite dimensional vector spaces over a field k. Construct an equivalence of categories between $\operatorname{Vect}_k^{\operatorname{fin}}$ and $(\operatorname{Vect}_k^{\operatorname{fin}})^{\operatorname{op}}$.
- (c) Recall the definition of the category BG for a group G from homework 1. Prove that any groupoid is equivalent to a groupoid of the form $\bigsqcup_{\alpha} BG_{\alpha}$, whose objects are the disjoint union of the objects and with no morphisms added between the components.
- (d) Suppose $F: \mathscr{C} \to \mathscr{D}$ is an equivalence of categories, and let $D: I \to \mathscr{C}$ be a diagram in \mathscr{C} . Assume that D has a colimit $(X, f_i) \in \mathscr{C}_{D/}$, prove that $(F(X), F(f_i)) \in \mathscr{D}_{F \circ D/}$ is a colimit of $F \circ D: I \to \mathscr{D}$.
- (e) Recall that a diagram $D: BG \to Set$ corresponds to a *G*-set *X*. Prove that the colimit of *D* is the *G*-orbits of *X* and the limit¹ of *D* is the *G*-fixed points of *X*.
- (2) Pulling back the covers. Given continuous maps $f: Y \to X, g: Z \to X$ define the *pullback*

$$Y \times_X Z = \{(y, z) \in Y \times Z \mid f(y) = g(z)\}$$

with the subset topology from $Y \times Z$. We often call the projection $Y \times_X Z \to Y$ the *pullback* of g along f, in which case it is denoted f^*g .

(a) (\star) Prove that the pullback is the limit of the diagram given by f and g:

$$\begin{array}{ccc} Y \times_X Z & \longrightarrow & Z \\ f^*g & & \downarrow g \\ Y & \longrightarrow & X \end{array}$$

¹Limits are dual to colimits, namely the limit is a terminal cone. Read any source for a more explicit description.

- (b) Suppose $g: Z \to X$ is a covering map. Prove that the pullback $f^*g: Y \times_X Z \to Y$ is also covering map.
- (c) Suppose X, Y are connected and locally simply connected, and let F be the $\pi_1(X)$ -set associated to g. Prove that the $\pi_1(Y)$ -set associated to f^*g is the same set F, with its action induced by the homomorphism $f_*: \pi_1(Y) \to \pi_1(X)$.
- (3) Coverings of the torus. Given an integer matrix $A \in M_{2\times 2}(\mathbb{Z})$, the induced linear map $A: \mathbb{R}^2 \to \mathbb{R}^2$ satisfies $A(\mathbb{Z}^2) \subseteq \mathbb{Z}^2$. It follows that A defines a continuous map on the cosets $A: \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$, where $\mathbb{R}^2/\mathbb{Z}^2 \simeq \mathbb{T}$ is the torus.
 - (a) Suppose A is invertible as a rational matrix. Prove that the associated map $A: \mathbb{T} \to \mathbb{T}$ is a covering map. What is the size of the fibers?
 - (b) Describe the \mathbb{Z}^2 -set associated to the covering $A: \mathbb{T} \to \mathbb{T}$.
 - (c) Denote $\Delta: S^1 \to S^1 \times S^1 \simeq \mathbb{T}$ the diagonal map $\Delta(x) = (x, x)$. Consider the covering of S^1 given by the pullback $\Delta^* A$. How many orbits does the associated \mathbb{Z} -set has?
- (4) Coverings of $S^1 \vee S^1$.
 - (a) Let Γ be a 4-regular directed graph whose edges are labeled a and b, such that every vertex has an ingoing and outgoing edge labeled a and an ingoing and outgoing edge labeled b. Show that Γ corresponds to a covering of $S^1 \vee S^1$, where all edges labeled a are mapped to one circle and all edges labeled b are mapped to the other.
 - (b) Find a simply connected covering space of $S^1 \vee S^1$.
 - (c) Consider the following (non-connected) graph:

Describe the F_2 -set associated to its covering of $S^1 \vee S^1$.

(d) Find a covering space of $S^1 \vee S^1$ whose associated F_2 -set is \mathbb{Z} with the action a.n = n+1and b.n = n-2 for $n \in \mathbb{Z}$.