Algebraic topology - Homework 10

January 8, 2025

- $(\star) = \text{not for submission}$, but make sure you understand how to do it
- $(\star\star)$ = not for submission, a bonus question which I find interesting
 - (1) The equivalence theorem. Let X be path connected locally simply connected space, and let $G = \pi_1(X)$.
 - (a) In class, you constructed an equivalence of categories fib: $\operatorname{Cov}_X \to \operatorname{Set}_G$. Construct an explicit inverse $\operatorname{Set}_G \to \operatorname{Cov}_X$.
 - (b) Let $p: Y \to X$ and $q: Z \to X$ be coverings with fibers $\operatorname{fib}(Y), \operatorname{fib}(Z) \in \operatorname{Set}_G$. Prove that the pullback $Y \times_X Z \to X$ is a covering of X, and find its fiber $\operatorname{fib}(Y \times_X Z)$.
 - (c) A section of $p: Y \to X$ is a map $s: X \to Y$ such that $p \circ s = id_X$. Show that there is a bijection between sections of p and fixed points of fib(Y).
 - (d) Prove that p is a homeomorphism if and only if fib(Y) is trivial, and Y is connected if and only if fib(Y) is transitive.
 - (2) Klein bottle. Let K be the Klein bottle.
 - (a) Prove that the simply connected cover of K is \mathbb{R}^2 , and show that the group of deck transformation is given by the semidirect product

$$\operatorname{Aut}_K(\mathbb{R}^2) \simeq \mathbb{Z} \rtimes_\sigma \mathbb{Z}$$

where $\sigma \colon \mathbb{Z} \to \operatorname{Aut}(\mathbb{Z})$ is given by $\sigma(i) = (-1)^i$.

- (b) Show that the Klein bottle is given by gluing two Möbius strips along their boundary, and prove that $\mathbb{Z} \rtimes_{\sigma} \mathbb{Z} \simeq \mathbb{Z} *_{2\mathbb{Z}} \mathbb{Z}$.
- (c) Construct non-normal coverings of the Klein bottle by the torus and by the Klein bottle.
- (3) Free groups II. Let \mathbb{F}_n be the free group on n generators. Recall that coverings of $\bigvee_{i=1}^n S^1$ are given by graphs.
 - (a) Suppose $N \leq \mathbb{F}_n$ is a non-trivial normal subgroup of infinite index, prove that N is not finitely generated. Deduce that the commutator subgroup $[\mathbb{F}_n, \mathbb{F}_n]$ is not finitely generated.
 - (b) For n = 2, draw a graph covering $S^1 \vee S^1$ whose fundamental group is $[\mathbb{F}_2, \mathbb{F}_2]$, and describe its fiber.

(c) Find explicit generators of $[\mathbb{F}_2, \mathbb{F}_2]$.

(4) Coverings of non-connected spaces.

- (a) (*) Given an equivalence of categories $F: \mathscr{C} \xrightarrow{\sim} \mathscr{D}$ and another category \mathscr{E} , prove that precomposition with F defines an equivalence of categories $\operatorname{Fun}(\mathscr{D}, \mathscr{E}) \xrightarrow{\sim} \operatorname{Fun}(\mathscr{C}, \mathscr{E})$.
- (b) Let X be a locally simply connected space. Show that there is equivalence of categories between Cov_X and $\operatorname{Fun}(\pi_{\leq 1}(X)^{\operatorname{op}}, \operatorname{Set})$.
- (c) Given a covering $Y \to X$, describe the corresponding functor $\pi_{\leq 1}(X)^{\text{op}} \to \text{Set}$ explicitly on objects and morphisms.