Algebraic topology - Homework 11

January 16, 2025

 (\star) = not for submission, but make sure you understand how to do it

- $(\star\star)$ = not for submission, a bonus question which I find interesting
- (1) Long exact sequence in homotopy. Given a fibration $p: (E, e) \to (B, b)$ with fiber $F = p^{-1}(b)$, pointed by $e \in F$, you constructed in class the boundary map $d: \pi_{i+1}(B) \to \pi_i(F)$.
 - (a) Finish the proof from class that the sequence

$$\cdots \to \pi_{n+1}(B) \xrightarrow{d} \pi_n(F) \to \pi_n(E) \to \pi_n(B) \xrightarrow{d} \pi_{n-1}(F) \to \cdots$$

is exact. Namely, prove that it is exact at d.

- (b) Show that $\pi_0(F)$ has a $\pi_1(B)$ -action. Moreover, show that $d: \pi_1(B) \to \pi_0(F)$ is given by $g \mapsto g.[e]$.
- (2) **Loop space.** Given a pointed space (X, x_0) , the *loop space* ΩX is the space of loops in X based on x_0 . In this exercise you will show that $\pi_n(\Omega X) \simeq \pi_{n+1}(X)$.
 - (a) (*) The mapping space X^Y is the set $\hom_{\text{Top}}(Y, X)$ endowed with the compact-open topology. Suppose Y is locally compact, prove that there is a (natural) bijection

$$\hom_{\mathrm{Top}}(Z, X^Y) \simeq \hom_{\mathrm{Top}}(Z \times Y, X).$$

- (b) The free path space of X is defined as X^I . Prove that the map $q: X^I \to X \times X$, sending a path in X to its source and target, is a fibration. The loop space is defined as the fiber $\Omega X := q^{-1}(x_0, x_0)$.
- (c) Let $p: E \to B$ be some fibration with fiber F, and $f: B' \to B$ a pointed map. Prove that the pullback $f^*p: B' \times_B E \to B'$ is also a fibration with fiber homeomorphic to F.
- (d) Consider the map $i: X \to X \times X$ given by $x \mapsto (x_0, x)$. The pullback

$$\begin{array}{c} PX \longrightarrow X \times I \\ \downarrow^{i^*q} \downarrow \qquad \qquad \downarrow^q \\ X \xrightarrow{i} X \times X \end{array}$$

is called the based path space. Prove that PX is contractible. Deduce that $\pi_n(\Omega X) \simeq \pi_{n+1}(X)$.

- (e) (**) Prove that $\Omega: \operatorname{Top}_* \to \operatorname{Top}_*$, where ΩX is pointed by the trivial loop, has a left adjoint called the *reduced suspention* $\tilde{\Sigma} X := X \wedge S^1$.
- (3) **Classifying spaces of groups.** In this exercise, you will see how group theory lives inside homotopy theory.
 - (a) (*) For a set X, define a semisimplicial set $\vec{E}X \in \operatorname{Set}_{s\Delta}$ whose *n*-simplicies are $\vec{E}X_n = X^{n+1}$, and the boundary maps $d_i \colon X^{n+1} \to X^n$ removes the *i*-th coordinate for $0 \leq i \leq n$. Verify that $\vec{E}X$ is a semisimplicial set, and define $EX = |\vec{E}X|$ its geometric realization.
 - (b) Describe EX explicitly, and prove that it is contractible, assuming $X \neq \emptyset$.
 - (c) Given a group G, show that EG has a topologically free G-action, and define the classifying space BG := EG/G. Prove that

$$\pi_n(BG) = \begin{cases} G & i = 1\\ 0 & i \neq 1 \end{cases}$$

and in particular $\pi_{<1}BG$ is the groupoid we denoted BG.

- (d) $(\star\star)$ Show that $G \mapsto BG$ defines a fully faithful functor $\operatorname{Grp} \to \operatorname{hTop}_*$.
- (4) **Grassmannian.** Given $n \leq k$, let $V_n(\mathbb{R}^k) \subseteq (\mathbb{R}^k)^n$ be the space of orthonormal *n*-tuples, with the subset topology. Consider the equivalence relation \sim on $V_n(\mathbb{R}^k)$, where two orthonormal *n*-tuples are equivalent if they span the same subspace. Define the *Grassmannian* $G_n(\mathbb{R}^k) = V_n(\mathbb{R}^k) / \sim$, which is the space of *n*-dimensional subspaces of \mathbb{R}^k .
 - (a) (*) Notice that $G_1(\mathbb{R}^k) = \mathbb{RP}^{k-1}$, thus Grassmannians generalize projective spaces.
 - (b) Prove that the quotient map $V_n(\mathbb{R}^k) \to G_n(\mathbb{R}^k)$ is a fiber bundle, with fiber O(n).
 - (c) Recall that $\mathbb{R}^{\infty} = \bigcup_{n < \infty} \mathbb{R}^n$ consists of infinite vectors which are zero except at finitely many places. Prove that $V_n(\mathbb{R}^{\infty})$ is contractible.
 - (d) Deduce that $\pi_i(O(n)) = \pi_{i+1}(G_n(\mathbb{R}^\infty))^1$, and find all homotopy groups of $\mathbb{R}\mathbb{P}^\infty$.

¹It is possible to define classifying spaces for topological groups, after which $G_n(\mathbb{R}^{\infty})$ is homotopy equivalent to BO(n).