Algebraic topology - Homework 12

January 23, 2025

 (\star) = not for submission, but make sure you understand how to do it $(\star\star)$ = not for submission, a bonus question which I find interesting In this exercise there are 3 questions, each worth $33\frac{1}{2}$ points.

- (1) **Basic Tor and Ext.** Let A, B, C, D be Abelian groups.
 - (a) Prove that Tor_1 is symmetric, namely $\text{Tor}_1(A, B) \simeq \text{Tor}_1(B, A)$.
 - (b) Let $0\to B\to C\to D\to 0$ be a short exact sequence, prove that there are exact sequences

 $0 \to \operatorname{Tor}_1(A, B) \to \operatorname{Tor}_1(A, C) \to \operatorname{Tor}_1(A, D) \to A \otimes B \to A \otimes C \to A \otimes D \to 0,$

 $0 \to \hom(A, B) \to \hom(A, C) \to \hom(A, D) \to \operatorname{Ext}^{1}(A, B) \to \operatorname{Ext}^{1}(A, C) \to \operatorname{Ext}^{1}(A, D) \to 0.$

- (c) Suppose B is torsion free, namely for every $0 \neq b \in B$ and n > 0, $nb \neq 0$. Show that $B \to B \otimes \mathbb{Q}$ is injective, and prove that $\operatorname{Tor}_1(A, \mathbb{Q}) = 0$ for every A.
- (d) For an Abelian group A, define the torsion subgroup $A_{tor} = \{a \in A \mid \exists n > 0, na = 0\}$. Show that A/A_{tor} is torsion free, and prove that $\operatorname{Tor}_1(A, \mathbb{Q}/\mathbb{Z}) = A_{tor}$ for every A.
- (e) Prove that $\operatorname{Ext}^1(\mathbb{Q}/\mathbb{Z},\mathbb{Z}) \neq 0$.

(2) Universal coefficients theorem.

- (a) In HW6 you defined a CW-structure on the lens space L(p;q). Using this structure, calculate the homology and cohomology of L(p;q) with coefficients in \mathbb{Z} , \mathbb{Q} and \mathbb{F}_l for all primes l, and verify that the universal coefficients theorem holds.
- (b) For a space X, define reduced homology with coefficients as $\widetilde{H}(X; A) := H_n(\widetilde{C}_{\bullet}(X) \otimes A)$. Prove that $\widetilde{H}_n(X) = 0$ for all n if and only if $\widetilde{H}_n(X; \mathbb{Q}) = 0$ and $\widetilde{H}_n(X; \mathbb{F}_l) = 0$ for all n and all primes l.
- (3) Tor over a ring. For R be a commutative ring, let Mod_R be the category of R-modules and R-linear maps. For every $M, N \in \operatorname{Mod}_R$ there exists a unique (up to isomorphism) R-module $M \otimes_R N$ such that R-linear maps $M \otimes_R N \to L$ correspond to R-bilinear maps $M \times N \to R$. Denote by $\operatorname{Ch}(R)$ the category of chain complexes of R-modules, which has an induced tensor product $(C \otimes_R D)_n = \bigoplus_{i+j=n} C_i \otimes_R D_j$. An R-module is called *free* if it is of the form $\bigoplus_{\alpha} R$, and a *free resolution* of $M \in \operatorname{Mod}_R$ is a non-negatively graded $P \in \operatorname{Ch}_{\geq 0}(R)$ with a quasi-isomorphism $P \to \underline{M}$ such that P_i are free. Given such free resolution, define $\operatorname{Tor}_n^R(M, N) = \operatorname{H}_n(P \otimes_R \underline{N})$, which does not depend on P.

- (a) (\star) Make sure you understand how the above claims translate from Abelian groups to general R-modules.
- (b) Prove that every $M \in \operatorname{Mod}_R$ has a free resolution, and calculate $\operatorname{Tor}_n^{\mathbb{Z}/4}(\mathbb{Z}/2,\mathbb{Z}/2)$.
- (c) Let $C \in Ch_{\geq 0}(R)$ be a non-negatively graded chain complex of free *R*-modules, and let $M \in Mod_R$. Construct a converging spectral sequence such that:

- i. $E_{n,s}^2 \simeq \operatorname{Tor}_s^R(M, \operatorname{H}_{n-s}(C)),$ ii. $E_{n,s}^\infty$ is the associated graded of a filtration on $H_n(M \otimes_R C).$
- (d) Let F be a field, and let $C, D, E \in Ch_{\geq 0}(F)$ be non-negatively graded chain complex of *F*-vector spaces. Prove that:
 - i. $\operatorname{H}^{n}(C) \simeq \operatorname{H}_{n}(C)^{*} := \operatorname{hom}_{F}(\operatorname{H}_{n}(C), F),$
 - ii. $\operatorname{H}_n(C \otimes_F D) \simeq \bigoplus_{i+j=n} \operatorname{H}_i(C) \otimes_F \operatorname{H}_j(D).$
 - iii. If $D \to E$ is a quasi-isomorphism, then $C \otimes_F D \to C \otimes_F E$ is a quasi-isomorphism.