Algebraic topology - Homework 13

January 30, 2025

- (\star) = not for submission, but make sure you understand how to do it
- $(\star\star)$ = not for submission, a bonus question which I find interesting
 - (1) Graded commutativity of the cup product. A graded ring E^* is called *graded commutative* if for every $a, b \in E^*$, $ab = (-1)^{|a||b|}ba$.
 - (a) Define an involution $i: \Delta^n \to \Delta^n$ by $i(t_0, \ldots, t_n) = (t_n, \ldots, t_0)$. Compute $\epsilon_n := \deg(S^{n-1} \simeq \partial \Delta^n \xrightarrow{i} \partial \Delta^n \simeq S^{n-1})$.
 - (b) Let $X \in \text{Top.}$ Define an involution $\rho \colon C^{\text{Sing}}_{\bullet}(X) \to C^{\text{Sing}}_{\bullet}(X)$ by $\rho_n(\sigma) = \epsilon_n \overline{\sigma}$, where $\overline{\sigma}$ is the composition $\Delta^n \xrightarrow{i} \Delta^n \xrightarrow{\sigma} X$. Prove that ρ is a map of chain complexes.
 - (c) Define $P : C_n^{Sing}(X) \to C_{n+1}^{Sing}(X)$ by

$$P(\sigma) = \sum_{i=0}^{n} (-1)^{i} \epsilon_{n-i} \sigma \big|_{[0,\dots,i-1,i,n,\dots,i+1,i]},$$

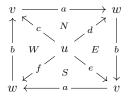
where by the restriction we mean precomposition with the map $\Delta^{n+1} \to \Delta^n$ given by $(t_0, \ldots, t_{n+1}) \mapsto (t_0, \ldots, t_{i-1}, t_i + t_{n+1}, t_n, \ldots, t_{i+1})$. Prove that P is a chain homotopy between ρ and id.

(d) Let R be a commutative ring. Show that the induced map of cochain complexes $\rho \colon \mathrm{C}^{\bullet}_{\operatorname{Sing}}(X;R) \to \mathrm{C}^{\bullet}_{\operatorname{Sing}}(X;R)$ satisfies

$$\rho(\varphi \smile \psi) = (-1)^{|\varphi||\psi|} \rho(\psi) \smile \rho(\varphi).$$

Deduce that $H^*(X; R)$ is graded commutative.

(2) Cohomology of the real projective plane. Consider the following semisimplicial set which realizes to \mathbb{RP}^2 :



Prove that there is an isomorphism of graded rings $H^*(\mathbb{RP}^2; \mathbb{F}_2) \simeq \mathbb{F}_2[x]/(x^3)$, where x is a generator in degree 1. (**Hint:** It may help to first calculate the cohomology groups using cellular cohomology).

- (3) Classifying space of first cohomology. Let X be a CW-complex. In this exercise, you will show that elements of $H^1(X; \mathbb{Z})$ are classified by maps $X \to S^1$ up to homotopy.
 - (a) (\star) Consider S^1 as the unit circle in \mathbb{C} . Show that the set of homotopy classes of maps $[X, S^1]$ inherits a group structure by multiplication on the target.
 - (b) Show that any continuous map $f: X \to S^1$ is homotopic to a continuous map $\tilde{f}: X \to S^1$ that sends the 0-cells to the basepoint $\tilde{f}(X^0) = \{1\}$.
 - (c) Suppose $f\colon X\to S^1$ sends the 0-cells to the basepoint. Every 1-cell $e\colon I\to X$ defines a loop in S^1 by $f\circ e\colon I\to S^1$, where indeed f(e(0))=f(e(1))=1. Define a cellular 1-cochain $\psi_f\in \mathrm{C}^1_\mathrm{CW}(X;\mathbb{Z})$ by

$$\psi_f(e) = [f \circ e] \in \pi_1(S^1, 1) \simeq \mathbb{Z}.$$

Prove that the assignment $f \mapsto \psi_f$ induces an isomorphism $[X, S^1] \xrightarrow{\sim} H^1(X; \mathbb{Z})$.

- (d) (**) Let A be an Abelian group. Define a topological group structure on the classifying space BA, and prove that $[X, BA] \simeq \mathrm{H}^1(X; A)$.
- (4) Cohomological Mayer-Vietoris. Let X be a space with an open cover $X = U \cup V$, and let A be an Abelian group. Use the universal coefficient theorem to construct a long exact sequence

$$\cdots \to \operatorname{H}^n(X;A) \to \operatorname{H}^n(U;A) \oplus \operatorname{H}^n(V;A) \to \operatorname{H}^n(U \cap V;A) \to \operatorname{H}^{n+1}(X;A) \to \cdots$$