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1 Homotopy
A homotopy between two continuous maps is a continuous deformation that turns one into the
other. Denote I = [0, 1].

Definition 1.1. Let f, g : X ! Y be continuous maps between spaces X, Y . A homotopy h : f ∼ g
is a continuous map h : X × I ! Y such that h(−, 0) = f , h(−, 1) = g.

Example 1.2. If X = pt = {∗}, then f, g : pt ! Y are determined by the points f(∗), g(∗) ∈ Y ,
and a homotopy h : f ∼ g is a path h : I ! Y between h(0) = f(∗) and h(1) = g(∗). The general
version should be thought of as a continuous family of paths: for every x ∈ X, there is a path
h(x, −) between f(x) and g(x).

Homotopy defines an equivalence relation between continuous maps, and we defined hTop as the
category where morphisms are equivalence classes of continuous maps up to homotopy. All the
invariants that we consider, e.g. singular homology HSing

n : Top ! Ab, send homotopical maps
to the same homomorphism, so they refine to a functor hTop ! Grp. In particular, they will
send isomorphisms in hTop to isomorphisms of groups. Let’s describe the isomorphisms of hTop
explicitly.

Definition 1.3. A continuous map f : X ! Y is a homotopy equivalence if there exists g : Y ! X
and homotopies f ◦ g ∼ idY , g ◦ f ∼ idX .

Showing that a map is a homotopy equivalence involves two different homotopies, and it can be
quite hard to visualize. A simpler case, which will often suffice, is when one of the homotopies is
an equality.

Definition 1.4. A continuous map r : X ! Y is a deformation retract if there exists i : Y ! X
such that r ◦ i = idY and there exists a homotopy idX ∼ g ◦ f .

Lemma 1.5. Let r ◦ X ! Y , i ◦ Y ! X be a retract of topological spaces, meaning r ◦ i = idY .
Then i is a subspace inclusion, meaning that it is a homeomorphism onto its image.

Proof. Consider i : Y ! i(Y ) and r|i(Y ) : i(Y ) ! Y . the composition r|i(Y ) ◦ i : Y ! Y is the
identity because r ◦ i = idY . On the other hand, for every i(y) ∈ i(Y ),

i ◦ r|i(Y )(i(y)) = i ◦ r ◦ i(y) = i ◦ idY (y) = i(y)

so i ◦ r|i(Y ) = idi(Y ).
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In particular, in the context of a deformation retract r : X ! Y , we will usually assume WLOG
that Y ⊆ X and i : Y ! X is the subspace inclusion. The condition r ◦ i = idY then becomes
∀y ∈ Y r(y) = y.

Example 1.6. The unit disk Dn = {v ∈ Rn | ||v|| ≤ 1} has a deformation retract to the point
{0}. The retract r : Dn ! {0} is the unique map r(v) = 0 (note that r(0) = 0). The composition
i ◦ r : Dn ! Dn is the map v 7! 0, and the homotopy idD2 ∼ i ◦ r is given by

h : Dn × I ! Dn

(v, t) 7! (1 − t)v

Indeed, h(v, 0) = v and h(v, 1) = 0.
A space X which has a deformation retract to a point r : X ! pt is called contractible.

Example 1.7. The unit sphere Sn = {v ∈ Rn | ||v|| = 1} is a deformation retraction of Rn \ 0.
The retract r : Rn \ 0 ! Sn is given by v 7! v

||v|| , and the homotopy idRn\0 ∼ i ◦ r is given by

h : (Rn \ 0) × I ! Rn \ 0

(v, t) 7! (1 − t)v + t
v

||v||

Indeed, h(v, 0) = v and h(v, 1) = v
||v|| .

Proposition 1.8. For every space X, the projection X × I ! X is a deformation retract.

Proof. Consider the inclusion i : X ! X × I given by i(x) = (x, 0). The homotopy idX×I ∼ i ◦ r is
given by

h : (X × I) × I ! X × I

((v, s), t) 7! (v, s(1 − t))

Indeed, h((v, s), 0) = (v, s) and h((v, s), 1) = (v, 0).

2 Coproducts and pushouts

2.1 Coproducts

The disjoint union of sets X ⊔ Y has the following properties in the category Set:

(1) There exists morphisms iX : X ! X ⊔ Y and iY : Y ! X ⊔ Y

(2) Given any other Z ∈ Set with morphisms f : X ! Z and g : Y ! Z, there exists a unique
h : X ⊔ Y ! Z such that h ◦ iX = f and h ◦ iY = g.

Those conditions are called the universal property of coproducts, and they can be formulated in any
category C . This universal property characterize X ⊔ Y up to a (unique) isomorphism.
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Lemma 2.1. Let X0, X1 ∈ C and suppose C, C ′ ∈ C come with maps ik : Xk ! C and i′
k : Xk ! C ′

for k = 0, 1, such that both C and C ′ satisfy the universal property of coproducts. Then there exists
a unique isomorphism h : C

∼−! C ′ such that h ◦ ik = i′
k for k = 0, 1.

Proof. The universal property of C ensures the existence of a unique map h : C ! C ′ satisfying
h ◦ ik = i′

X , we need to show that h is an isomorphism. The universal property of C ′ provides
similarly a map h′ : C ′ ! C such that h′ ◦ i′

k = ik, in particular h ◦ h′ : C ′ ! C ′ satisfies
h ◦ h′ ◦ i′

k = i′
k and h′ ◦ h : C ′ ! C satisfies h′ ◦ h ◦ ik = ik. However, idC′ : C ′ ! C ′ also satisfies

idC′ ◦ i′
k = i′

k and similarly idC : C ! C satisfies idC ◦ ik = ik, so by uniqueness h ◦ h′ = idC′ and
h′ ◦ h = idC .

Because coproducts, if they exist, are essentially unique, we will refer to them as the coproduct,
and will usually denote them by X ⊔ Y .

Example 2.2. Besides disjoint union of sets, we have the following examples:

• In Top, the coproduct of X, Y is the disjoint union X ⊔ Y with the induced topology.

• In Sets∆, the coproduct of X, Y is given by levelwise coproduct (X ⊔Y )n = Xn⊔Yn (exercise).

• In Ab, the coproduct of A, B is the direct sum A ⊕ B.

• In Ch, the coproduct of A•, B• is given by levelwise direct sum (A• ⊕ B•)n = An ⊕ Bn

Even though the constructions above are different, the fact that they satisfy the same universal
property allows us to compare them along functors. A naive definition is that a functor F : C ! D
preserves coproducts if F (X ⊔ Y ) = F (X) ⊔ F (Y ). The problem is that coproducts are defined
only up to isomorphism, so it is meaningless to ask for equality. A more sensible thing is to ask
F (X ⊔ Y ) ≃ F (X) ⊔ F (Y ), but even then we want to know how they are isomorphic. Luckily, we
always have a canonical candidate.

Definition 2.3. Let C , D be categories with coproducts and let F : C ! D be a functor. For
every X, Y ∈ C , the morphisms

F (iX) : F (X) ! F (X ⊔ Y )

F (iY ) : F (Y ) ! F (X ⊔ Y )

induce by the universal property of coproducts in D a morphism F (X) ⊔ F (Y ) ! F (X ⊔ Y ) called
the assembly map. We say that F preserves coproducts if the assembly map is an isomorphism for
all X, Y ∈ C .

Proposition 2.4. The following functors preserve coproducts:

(1) homTop(Z, −) : Top ! Set for Z ∈ Top connected non-empty.

(2) Sing : Top ! Sets∆

(3) Z⟨−⟩ : Set ! Ab

(4) C∆
• : Sets∆ ! Ch
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(5) Hn : Ch ! Ab

(6) H∆
n : Sets∆ ! Ab

(7) HSing
n : Top ! Ab

Proof. (1) Let X, Y ∈ Top, and consider the assembly map

homTop(Z, X) ⊔ homTop(Z, Y ) ! homTop(Z, X ⊔ Y ).

The inverse to the assembly map

homTop(Z, X ⊔ Y ) ! homTop(Z, X) ⊔ homTop(Z, Y )

is built by noticing that every continuous map f : Z ! X ⊔ Y factors through exactly one of
the components Z ! X or Z ! Y , as Z is connected and non-empty.

(2) The assembly map Sing(X ⊔ Y ) ! Sing(X) ⊔ Sing(Y ) is a natural transformation in Sets∆ =
Fun(s∆op, Set). Thus, as we saw in the exercise, to check that it is an isomorphism it is
enough to check levelwise Sing(X ⊔ Y )n ! Sing(X)n ⊔ Sing(Y )n This map is nothing but the
previous assembly map

homTop(∆n, X ⊔ Y ) ! homTop(∆n, X) ⊔ homTop(∆n, Y )

which is an isomorphism.

(3) This follows because Z⟨−⟩ is a left adjoint. Explicitly, the assembly map Z⟨A⟩ ⊕ Z⟨A⟩ !
Z⟨A ⊔ B⟩ which is given by (

∑
i niai,

∑
j kjbj) 7!

∑
i niai +

∑
j kjbj is bijective.

(4) Similar to (2), C∆
• is given levelwise by Z⟨−⟩, it remains to show that the isomorphisms in

Ch are the levelwise isomorphisms (exercise).

(5) Consider two chain complexes

. . . An+1
∂A

n+1−−−! An
∂A

n−−! An−1 . . .

. . . Bn+1
∂B

n+1−−−! Bn
∂B

n−−! Bn−1 . . .

with coproduct

. . . An+1 ⊕ Bn+1
∂A

n+1⊕∂B
n+1−−−−−−−! An ⊕ Bn

∂A
n ⊕∂B

n−−−−−! An−1 ⊕ Bn−1 . . .

The assembly map Hn(A) ⊕ Hn(B) ! Hn(A ⊕ B) is then explicitly
ker(∂A

n )/Im(∂A
n+1) ⊕ ker(∂B

n )/Im(∂B
n+1) ! ker(∂A

n )⊕ker(∂B
n )/Im(∂A

n+1)⊕Im(∂B
n+1)

And generally, the map A/B ⊕ C/D ! A⊕C/B⊕D is an isomorphism (exercise).

(6) By composition H∆
• n = Hn ◦ C∆

•

(7) By composition HSing
• n = H∆

• n ◦ Sing.

Remark 2.5. For a functor that does not preserve coproducts, consider the forgetful U : Ab ! Set.
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2.2 Pushouts

A generalization of disjoint union is the gluing of two spaces along a common subspace. This
operation, called the pushout, also has a universal property.

Definition 2.6. Let X ! Y and X ! Z be morphisms in a category C , a pushout square is a
commuting square

X Y

Z P

⌜

such that for every other commuting square

X Y

Y W

there exists a unique map P ! W making the diagram commute

X Y

Y P

W

⌜

∃!

As for coproducts, the universal property ensures that the pushout is unique up to (a unique)
isomorphism. Thus, we will refer to the pushout, and denote it by Y ∪X Z

Example 2.7. Consider morphisms f : X ! Y , g : X ! Z.

(1) In Set, Y ∪X Z = Y ⊔Z/∀x∈X,f(x)∼g(z)

(2) In Top, Y ∪X Z = Y ⊔Z/∀x∈X,f(x)∼g(z) with the quotient topology.

(3) In Ab, B ∪A C = B⊕C/ker(f−g)

In general, we see that pushouts can be built from coproducts and some form of quotient. On the
flip side, coproducts and quotients can be seen as forms of pushouts.

Example 2.8. The following are pushout squares in Top:

• For X, Y ∈ Top,
∅ X

Y X ⊔ Y

⌜
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• For ∅ ̸= Y ⊆ X ∈ Top,
Y X

pt X/Y

⌜
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