
Algebraic topology - Recitation 4

November 25, 2024

1 Naturality of Mayer-Vietoris

In the exercise, you showed that the long exact sequence in homology is natural. We will present
a solution, and use it show naturality of Mayer-Vietoris, which we will need today.

Lemma 1.1. A commuting diagram of short exact sequences of chain complexes

0 A• B• C• 0

0 A′
• B′

• C ′
• 0

i

f

j

g h

i′ j′

induces a commuting square
Hn+1(C•) Hn(A•)

Hn+1(C ′
•) Hn(A′

•)

d

h f

d

Proof. Let [c] ∈ Hn+1(C•), we first recall how d([c]) is defined. By surjectivity there is some
b ∈ Bn+1 such that j(b) = c, and c is a cycle, so

0 = ∂c = ∂j(b) = j(∂b)

and so by exactness there is a (unique) a ∈ An such that i(a) = ∂b. We defined d([c]) = [a] (you
showed that it is well-defined).
On the other hand, consider h(c) ∈ C ′

n+1. We have j′(g(b)) = h(j(b)) = h(c), and f(a) ∈ A′
n

satisfies i′(f(a)) = g(i(a)) = g(∂b) = ∂g(b), so d([h(c)]) = [f(a)]. It follows that

d ◦ h([c])) = f([a]) = f ◦ d([c])

This shows naturality at d, it is easier for the other maps in the sequence (but we also only need it
at d today).
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Proposition 1.2. Suppose X = U ∪ V , X ′ = U ′ ∪ V ′ are open coverings, and suppose f : X ! X ′

restrict to f(U) ⊆ U ′, f(V ) ⊆ V ′. Then Mayer-Vietoris is natural with respect to f :

· · · HSing
n+1(X) HSing

n (U ∩ V ) · · ·

· · · HSing
n+1(X ′) HSing

n (U ′ ∩ V ′) · · ·

d

f∗ f∗

d

Proof. It is enough to see that we have a commuting diagram of short exact sequences of chain
complexes

0 CSing
• (U ∩ V ) CSing

• (U) ⊕ CSing
• (V ) CSing

• (U + V ) 0

0 CSing
• (U ′ ∩ V ′) CSing

• (U ′) ⊕ CSing
• (V ′) CSing

• (U ′ + V ′) 0

f∗ f∗⊕f∗ f∗

2 Degree

Consider a continuous map f : Sn ! Sn for n ≥ 0 (where S0 = {1, −1}). By functoriality, this
induces a map on (reduced) singular homology f∗ : H̃Sing

n (Sn) ! H̃Sing
n (Sn). Fix an isomorphism

H̃Sing
n (Sn) ≃ Z. Under such an isomorphism, we have f∗ : Z ! Z.

Definition 2.1. The degree of f : Sn ! Sn is defined as deg(f) = f∗(1) ∈ Z.

A choice of a different isomorphism H̃Sing
n (Sn) ≃ Z amounts to replacing 1 with -1, but because we

do it on both sides we will get the same degree. For n > 0, we could use unreduced homology, as
HSing

n (Sn) ≃ H̃Sing
n (Sn). Note moreover that for n = 0 there are only four maps S0 ! S0, and we

can find their degrees explicitly (try!).

Proposition 2.2. The following are basic properties of the degree:

(1) deg(idSn) = 1

(2) deg(f ◦ g) = deg(f) deg(g)

(3) The degree is homotopy invariant: If f ∼ g then deg(f) = deg(g).

(4) If f is a homotopy equivalence, then deg(f) = ±1.

Proof. (1) and (2) follow from functoriality. For (2), notice that (f◦g)∗(1) = f∗(g∗(1)) = f∗(1)g∗(1).
(3) follows from homotopy invariance of singular homology, and (4) from that fact that if g is
homotopy inverse to f then deg(f) deg(g) = 1.

As examples of a map with degree −1, we have reflection along a single coordinate. We will first
do the case S0.
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Lemma 2.3. Let r : S0 ! S0 be the reflection 1, −1 7! −1, 1. Then deg(r) = −1.

Proof. Sing(S0) has only two 0-simplices, corresponding to ±1, and the 1-simplices are constant at
1 or −1 so they have a trivial boundary. Thus, H̃Sing

0 (S0) is the kernel of the augmentation map

ϵ : Z⟨[1], [−1]⟩ ! Z,

and in particular H̃Sing
0 (S0) is generated by [1] − [−1]. The map r∗ then induces r∗([1] − [−1]) =

[−1] − [1], so r∗ acts by multiplication with −1.

For the reflection in Sn, we could again compute on a generator directly, but this becomes harder.
Instead, we will prove by induction using the naturality of Mayer-Vietoris.

Proposition 2.4. Let r : Sn ! Sn be given by r(x0, x1, . . . , xn) = (−x0, x1, . . . , xn), then deg(r) =
−1

Proof. By induction on n. The case n = 0 is the above Lemma, assume n > 0. Consider the
covering of Sn given by the north and south poles

N = {(x0, . . . , xn) ∈ Sn|xn ≥ 0} S = {(x0, . . . , xn) ∈ Sn|xn ≤ 0}

with intersection the equator

E = {(x0, . . . , xn) ∈ Sn|xn = 0}.

Even though N and S are closed, they have neighborhoods Ñ , S̃ that deformation retracts to them,
and Ñ ∩ S̃ deformation retracts to E, so we can use them in (reduced) Mayer-Vietoris. Moreover,
notice that r(N) = N and r(S) = S, so we can use naturality.

0 = H̃Sing
n (N) ⊕ H̃Sing

n (S) H̃Sing
n (Sn) H̃Sing

n−1(E) H̃Sing
n−1(N) ⊕ H̃Sing

n−1(S) = 0

0 = H̃Sing
n (N) ⊕ H̃Sing

n (S) H̃Sing
n (Sn) H̃Sing

n−1(E) H̃Sing
n−1(N) ⊕ H̃Sing

n−1(S) = 0

∼

r∗ r∗

∼

Notice that E ≃ Sn−1, and r|E is the reflection along the first coordinate in Sn−1. By the induction
hypothesis r∗ : H̃Sing

n−1(E) ! H̃Sing
n−1(E) is given by multiplication by −1, so by the above isomorphism

r∗ : H̃Sing
n (Sn) ! H̃Sing

n (Sn) also multiplies by −1. Thus deg(r) = −1.

Corollary 2.5. The map −idSn : Sn ! Sn sending (x0, . . . , xn) 7! (−x0, . . . , −xn) has degree
(−1)n+1

Proof. It is the composition of n + 1 reflections.

Already from this calculation we can deduce interesting results. A continuous tangent vector field
on Sn is a continuous map v : Sn ! Rn+1 such that for every x ∈ Sn, x ⊥ v(x).

Theorem 2.6 (Hairy Ball Theorem). There exists a non-vanishing continuous vector field on Sn

(meaning v(x) ̸= 0 for all x ∈ S1) if and only if n is odd.
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In the case n = 2, you can imagine that the vector field represents hairs on a hairy ball. The
non-existence for n = 2 tells us that we cannot comb a hairy ball without having hairs pointing up
(a schwanz).

Proof. Assume that such vector field exists. Because v(x) ̸= 0, we may normalize so that ||v(x)|| = 1
by replacing v(x) with v(x)/||v(x)||. We will define a homotopy id ∼ −id by drawing the arc from
x to −x through v(x). Explicitly, define h : S1 × I ! S1 by h(x, t) = cos(πt)x + sin(πt)v(x), where
h(x, t) ∈ Sn because ||h(x, t)|| = cos(πt)2 + sin(πt)2 = 1, and indeed h(x, 0) = x and h(x, 1) = −x.
Thus, 1 = deg(id) = deg(−id) = (−1)n + 1, which implies that n is odd.
For n odd, there is a non-vanishing vector field given by v(x) = (x0, −x1, x2, −x3 . . . , xn−1, −xn).

To see an example of degree 2, we will have to start with S1. First, let us describe a generator of
HSing

1 (S1). We will think of S1 as the unit circle in C, and of ∆1 as the interval I = [0, 1]. Let
ν, σ : I ! S1 be given by

ν(t) = eiπt

σ(t) = e−iπt

ν, σ define 1-simplicies in Sing(S1), and ν − σ is a cycle.

−1 1

ν

σ

Proposition 2.7. [ν − σ] is a generator of HSing
1 (S1).

Proof. Consider reduced Mayer-Vietoris for the covering S1 = N ∪ S, with N ∩ S = E ≃ S0.

0 = H̃Sing
1 (N) ⊕ H̃Sing

1 (S) ! H̃Sing
1 (Sn) d−! H̃Sing

0 (E) ! H̃Sing
0 (N) ⊕ H̃Sing

0 (S) = 0

In particular, d is an isomorphism. Note that [ν − σ] is already split into a part in N and a part in
S, so by definition

d([ν − σ]) = ∂ν = ∂σ = [−1] − [1]

and we saw that [−1] − [1] is a generator of H̃Sing
0 (E).

Proposition 2.8. Consider S1 as the unit circle in C. Then p : S1 ! S1 given by p(z) = z2 has
degree 2.

Proof. After squaring, p∗ν(t) = e2πit is the path going from 1 to itself counter-clockwise:

1p∗ν
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In particular [p∗ν] = [ν − σ]. Similarly, p∗σ(t) = e−2πit goes from 1 to itself clockwise, so [p∗σ] =
−[ν − σ]. It follows that p∗[ν − σ] = 2[ν − σ].

There is another way to see that deg(p) = 2. Consider S1 as pointed by 1 ∈ S1. Notice that p(−1) =
1 and so p factors through the quotient S1/{−1, 1} ! S1. Note moreover that S1/{−1, 1} ≃ S1∨S1.
Thus, p factors as a map S1 ! S1 ∨ S1 ! S1, where the first map pinches S1 in the middle and
the second map sends both copies through the identity.

S1 ∨ S1

S1
id id

On homology, this induces

HSing
1 (S1) ! HSing

1 (S1) ⊕ HSing
1 (S1) ! HSing

1 (S1)

The first map sends a generator of HSing
1 (S1) to the same generator in both pinched circles 1 7! (1, 1),

and the second map adds the two coordinates (1, 1) 7! 2.
We used the following fact about the homology of wedge:

Proposition 2.9. Let X, Y ∈ Top∗, such that ∗ ∈ X and ∗ ∈ Y have a contractible neighborhood,
then for all n ≥ 0 the assembly map

H̃Sing
n (X) ⊕ H̃Sing

n (Y ) ! H̃Sing
n (X ∨ Y )

is an isomorphism.

Proof. By the existence of a contractible neighborhood, we can use X, Y as a covering of X ∨ Y for
Mayer-Vietoris, with intersection X ∩ Y = pt.

0 = H̃Sing
n (pt) ! H̃Sing

n (X) ⊕ H̃Sing
n (Y ) ! H̃Sing

n (X ∨ Y ) ! H̃Sing
n (pt) = 0,

so the map in the middle is an isomorphism. Verify that this map is indeed the assembly map.

We can use p to define inductively a map Sn ! Sn with degree 2. For that, we will use suspensions.

Definition 2.10. Let Σ : Top ! Top be the functor sending X ∈ Top to the pushout

X × {−1, 1} X × [−1, 1]

{−1, 1} ΣX

⌟

Explicitly, ΣX = X × [−1, 1]/ ∼ where the equivalence relation identifies all points in X × {−1}
and all point in X × {1} separetley. A map f : X ! Y is sent to Σf : ΣX ! ΣY , given by
[(x, t)] 7! [(f(x), t)].
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Example 2.11. ΣSn−1 ≃ Sn. with homeomorphism given by

((x0, . . . , xn−1), t) 7! (
√

1 − t2x0, . . . ,
√

1 − t2xn−1, t)

In particular, if r : Sn−1 ! Sn−1 is the reflection of the first coordinate, then Σr is also the
reflection of the first coordinate.

Proposition 2.12. Let f : Sn−1 ! Sn−1, then deg(Σf) = deg(f).

Proof. This is the same idea as in the special case of reflection. Consider the covering Sn = N ∪ S,
such that under the identification Sn = ΣSn−1, N corresponds to Sn−1 ×[0, 1] and S corresponds to
Sn−1 × [−1, 0]. In particular, Σf(N) = N , Σf(S) = S. Note that E = Sn−1 × {0}, and Σf |E = f .
By naturality of Mayer-Vietoris

0 = H̃Sing
n (N) ⊕ H̃Sing

n (S) H̃Sing
n (Sn) H̃Sing

n−1(E) H̃Sing
n−1(N) ⊕ H̃Sing

n−1(S) = 0

0 = H̃Sing
n (N) ⊕ H̃Sing

n (S) H̃Sing
n (Sn) H̃Sing

n−1(E) H̃Sing
n−1(N) ⊕ H̃Sing

n−1(S) = 0

∼

Σf∗ f∗

∼

so deg(Σf) = deg(f).

Corollary 2.13. Consider Σn−1p : Sn ! Sn, then deg(Σn−1p) = 2.
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