Algebraic topology - Recitation 4

November 25, 2024

1 Naturality of Mayer-Vietoris

In the exercise, you showed that the long exact sequence in homology is natural. We will present a solution, and use it show naturality of Mayer-Vietoris, which we will need today.

Lemma 1.1. A commuting diagram of short exact sequences of chain complexes

0 —	$\rightarrow A_{\bullet}$ —	$\xrightarrow{i} B_{\bullet}$ -	$\xrightarrow{j} C_{\bullet} -$	$\longrightarrow 0$
	$\int f$	g	h	
0 —	$\rightarrow \stackrel{*}{A'_{\bullet}} -$	$\xrightarrow{i'} B'_{\bullet} -$	$\xrightarrow{j'} \stackrel{\checkmark}{\longrightarrow} \stackrel{\checkmark}{C'_{\bullet}} -$	$\longrightarrow 0$

induces a commuting square

$$\begin{array}{c} \mathrm{H}_{n+1}(C_{\bullet}) \xrightarrow{d} \mathrm{H}_{n}(A_{\bullet}) \\ \downarrow_{h} \qquad \qquad \downarrow_{f} \\ \mathrm{H}_{n+1}(C_{\bullet}') \xrightarrow{d} \mathrm{H}_{n}(A_{\bullet}') \end{array}$$

Proof. Let $[c] \in H_{n+1}(C_{\bullet})$, we first recall how d([c]) is defined. By surjectivity there is some $b \in B_{n+1}$ such that j(b) = c, and c is a cycle, so

$$0 = \partial c = \partial j(b) = j(\partial b)$$

and so by exactness there is a (unique) $a \in A_n$ such that $i(a) = \partial b$. We defined d([c]) = [a] (you showed that it is well-defined).

On the other hand, consider $h(c) \in C'_{n+1}$. We have j'(g(b)) = h(j(b)) = h(c), and $f(a) \in A'_n$ satisfies $i'(f(a)) = g(i(a)) = g(\partial b) = \partial g(b)$, so d([h(c)]) = [f(a)]. It follows that

$$d \circ h([c])) = f([a]) = f \circ d([c])$$

This shows naturality at d, it is easier for the other maps in the sequence (but we also only need it at d today).

Proposition 1.2. Suppose $X = U \cup V$, $X' = U' \cup V'$ are open coverings, and suppose $f: X \to X'$ restrict to $f(U) \subseteq U'$, $f(V) \subseteq V'$. Then Mayer-Vietoris is natural with respect to f:

Proof. It is enough to see that we have a commuting diagram of short exact sequences of chain complexes

$$0 \longrightarrow C^{\operatorname{Sing}}_{\bullet}(U \cap V) \longrightarrow C^{\operatorname{Sing}}_{\bullet}(U) \oplus C^{\operatorname{Sing}}_{\bullet}(V) \longrightarrow C^{\operatorname{Sing}}_{\bullet}(U+V) \longrightarrow 0$$

$$\downarrow f_{*} \qquad \qquad \qquad \downarrow f_{*} \oplus f_{*} \qquad \qquad \qquad \downarrow f_{*}$$

$$0 \longrightarrow C^{\operatorname{Sing}}_{\bullet}(U' \cap V') \longrightarrow C^{\operatorname{Sing}}_{\bullet}(U') \oplus C^{\operatorname{Sing}}_{\bullet}(V') \longrightarrow C^{\operatorname{Sing}}_{\bullet}(U'+V') \longrightarrow 0$$

$$\Box$$

2 Degree

Consider a continuous map $f: S^n \to S^n$ for $n \ge 0$ (where $S^0 = \{1, -1\}$). By functoriality, this induces a map on (reduced) singular homology $f_*: \widetilde{H}_n^{\mathrm{Sing}}(S^n) \to \widetilde{H}_n^{\mathrm{Sing}}(S^n)$. Fix an isomorphism $\widetilde{H}_n^{\mathrm{Sing}}(S^n) \simeq \mathbb{Z}$. Under such an isomorphism, we have $f_*: \mathbb{Z} \to \mathbb{Z}$.

Definition 2.1. The degree of $f: S^n \to S^n$ is defined as $\deg(f) = f_*(1) \in \mathbb{Z}$.

A choice of a different isomorphism $\widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(S^{n}) \simeq \mathbb{Z}$ amounts to replacing 1 with -1, but because we do it on both sides we will get the same degree. For n > 0, we could use unreduced homology, as $\mathrm{H}_{n}^{\mathrm{Sing}}(S^{n}) \simeq \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(S^{n})$. Note moreover that for n = 0 there are only four maps $S^{0} \to S^{0}$, and we can find their degrees explicitly (try!).

Proposition 2.2. The following are basic properties of the degree:

- (1) $\operatorname{deg}(\operatorname{id}_{S^n}) = 1$
- (2) $\deg(f \circ g) = \deg(f) \deg(g)$
- (3) The degree is homotopy invariant: If $f \sim g$ then $\deg(f) = \deg(g)$.
- (4) If f is a homotopy equivalence, then $\deg(f) = \pm 1$.

Proof. (1) and (2) follow from functoriality. For (2), notice that $(f \circ g)_*(1) = f_*(g_*(1)) = f_*(1)g_*(1)$. (3) follows from homotopy invariance of singular homology, and (4) from that fact that if g is homotopy inverse to f then $\deg(f) \deg(g) = 1$.

As examples of a map with degree -1, we have reflection along a single coordinate. We will first do the case S^0 .

Lemma 2.3. Let $r: S^0 \to S^0$ be the reflection $1, -1 \mapsto -1, 1$. Then $\deg(r) = -1$.

Proof. Sing(S^0) has only two 0-simplices, corresponding to ± 1 , and the 1-simplices are constant at 1 or -1 so they have a trivial boundary. Thus, $\widetilde{H}_0^{\text{Sing}}(S^0)$ is the kernel of the augmentation map

$$\epsilon \colon \mathbb{Z}\langle [1], [-1] \rangle \to \mathbb{Z}$$

and in particular $\widetilde{H}_0^{\text{Sing}}(S^0)$ is generated by [1] - [-1]. The map r_* then induces $r_*([1] - [-1]) = [-1] - [1]$, so r_* acts by multiplication with -1.

For the reflection in S^n , we could again compute on a generator directly, but this becomes harder. Instead, we will prove by induction using the naturality of Mayer-Vietoris.

Proposition 2.4. Let $r: S^n \to S^n$ be given by $r(x_0, x_1, ..., x_n) = (-x_0, x_1, ..., x_n)$, then deg(r) = -1

Proof. By induction on n. The case n = 0 is the above Lemma, assume n > 0. Consider the covering of S^n given by the north and south poles

$$N = \{(x_0, \dots, x_n) \in S^n | x_n \ge 0\} \qquad S = \{(x_0, \dots, x_n) \in S^n | x_n \le 0\}$$

with intersection the equator

$$E = \{ (x_0, \dots, x_n) \in S^n | x_n = 0 \}.$$

Even though N and S are closed, they have neighborhoods \tilde{N}, \tilde{S} that deformation retracts to them, and $\tilde{N} \cap \tilde{S}$ deformation retracts to E, so we can use them in (reduced) Mayer-Vietoris. Moreover, notice that r(N) = N and r(S) = S, so we can use naturality.

$$\begin{split} 0 &= \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(N) \oplus \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(S) \longrightarrow \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(S^{n}) \xrightarrow{\sim} \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(E) \longrightarrow \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(N) \oplus \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(S) = 0 \\ & \downarrow^{r_{*}} & \downarrow^{r_{*}} \\ 0 &= \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(N) \oplus \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(S) \longrightarrow \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(S^{n}) \xrightarrow{\sim} \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(E) \longrightarrow \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(N) \oplus \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(S) = 0 \end{split}$$

Notice that $E \simeq S^{n-1}$, and $r|_E$ is the reflection along the first coordinate in S^{n-1} . By the induction hypothesis $r_* \colon \widetilde{H}_{n-1}^{Sing}(E) \to \widetilde{H}_{n-1}^{Sing}(E)$ is given by multiplication by -1, so by the above isomorphism $r_* \colon \widetilde{H}_n^{Sing}(S^n) \to \widetilde{H}_n^{Sing}(S^n)$ also multiplies by -1. Thus $\deg(r) = -1$.

Corollary 2.5. The map $-\operatorname{id}_{S^n}: S^n \to S^n$ sending $(x_0, \ldots, x_n) \mapsto (-x_0, \ldots, -x_n)$ has degree $(-1)^{n+1}$

Proof. It is the composition of n + 1 reflections.

Already from this calculation we can deduce interesting results. A continuous tangent vector field on S^n is a continuous map $v: S^n \to \mathbb{R}^{n+1}$ such that for every $x \in S^n$, $x \perp v(x)$.

Theorem 2.6 (Hairy Ball Theorem). There exists a non-vanishing continuous vector field on S^n (meaning $v(x) \neq 0$ for all $x \in S^1$) if and only if n is odd.

In the case n = 2, you can imagine that the vector field represents hairs on a hairy ball. The non-existence for n = 2 tells us that we cannot comb a hairy ball without having hairs pointing up (a schwanz).

Proof. Assume that such vector field exists. Because $v(x) \neq 0$, we may normalize so that ||v(x)|| = 1 by replacing v(x) with v(x)/||v(x)||. We will define a homotopy id $\sim -id$ by drawing the arc from x to -x through v(x). Explicitly, define $h: S^1 \times I \to S^1$ by $h(x,t) = \cos(\pi t)x + \sin(\pi t)v(x)$, where $h(x,t) \in S^n$ because $||h(x,t)|| = \cos(\pi t)^2 + \sin(\pi t)^2 = 1$, and indeed h(x,0) = x and h(x,1) = -x. Thus, $1 = \deg(id) = \deg(-id) = (-1)^n + 1$, which implies that n is odd.

For n odd, there is a non-vanishing vector field given by $v(x) = (x_0, -x_1, x_2, -x_3, \dots, x_{n-1}, -x_n)$.

To see an example of degree 2, we will have to start with S^1 . First, let us describe a generator of $\mathrm{H}_1^{\mathrm{Sing}}(S^1)$. We will think of S^1 as the unit circle in \mathbb{C} , and of Δ^1 as the interval I = [0, 1]. Let $\nu, \sigma : I \to S^1$ be given by

$$\nu(t) = e^{i\pi t}$$
$$\sigma(t) = e^{-i\pi t}$$

 ν, σ define 1-simplicies in Sing(S¹), and $\nu - \sigma$ is a cycle.

Proposition 2.7. $[\nu - \sigma]$ is a generator of $H_1^{Sing}(S^1)$.

Proof. Consider reduced Mayer-Vietoris for the covering $S^1 = N \cup S$, with $N \cap S = E \simeq S^0$.

$$0 = \widetilde{\mathrm{H}}_{1}^{\mathrm{Sing}}(N) \oplus \widetilde{\mathrm{H}}_{1}^{\mathrm{Sing}}(S) \to \widetilde{\mathrm{H}}_{1}^{\mathrm{Sing}}(S^{n}) \xrightarrow{d} \widetilde{\mathrm{H}}_{0}^{\mathrm{Sing}}(E) \to \widetilde{\mathrm{H}}_{0}^{\mathrm{Sing}}(N) \oplus \widetilde{\mathrm{H}}_{0}^{\mathrm{Sing}}(S) = 0$$

In particular, d is an isomorphism. Note that $[\nu - \sigma]$ is already split into a part in N and a part in S, so by definition

$$d([\nu - \sigma]) = \partial \nu = \partial \sigma = [-1] - [1]$$

and we saw that [-1] - [1] is a generator of $\widetilde{H}_0^{Sing}(E)$.

Proposition 2.8. Consider S^1 as the unit circle in \mathbb{C} . Then $p: S^1 \to S^1$ given by $p(z) = z^2$ has degree 2.

Proof. After squaring, $p_*\nu(t) = e^{2\pi i t}$ is the path going from 1 to itself counter-clockwise:

In particular $[p_*\nu] = [\nu - \sigma]$. Similarly, $p_*\sigma(t) = e^{-2\pi i t}$ goes from 1 to itself clockwise, so $[p_*\sigma] = -[\nu - \sigma]$. It follows that $p_*[\nu - \sigma] = 2[\nu - \sigma]$.

There is another way to see that $\deg(p) = 2$. Consider S^1 as pointed by $1 \in S^1$. Notice that p(-1) = 1 and so p factors through the quotient $S^1/\{-1,1\} \to S^1$. Note moreover that $S^1/\{-1,1\} \simeq S^1 \vee S^1$. Thus, p factors as a map $S^1 \to S^1 \vee S^1 \to S^1$, where the first map pinches S^1 in the middle and the second map sends both copies through the identity.

On homology, this induces

$$\mathrm{H}^{\mathrm{Sing}}_1(S^1) \to \mathrm{H}^{\mathrm{Sing}}_1(S^1) \oplus \mathrm{H}^{\mathrm{Sing}}_1(S^1) \to \mathrm{H}^{\mathrm{Sing}}_1(S^1)$$

The first map sends a generator of $H_1^{\text{Sing}}(S^1)$ to the same generator in both pinched circles $1 \mapsto (1, 1)$, and the second map adds the two coordinates $(1, 1) \mapsto 2$.

We used the following fact about the homology of wedge:

Proposition 2.9. Let $X, Y \in \text{Top}_*$, such that $* \in X$ and $* \in Y$ have a contractible neighborhood, then for all $n \ge 0$ the assembly map

$$\widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(X) \oplus \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(Y) \to \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(X \lor Y)$$

is an isomorphism.

Proof. By the existence of a contractible neighborhood, we can use X, Y as a covering of $X \lor Y$ for Mayer-Vietoris, with intersection $X \cap Y = \text{pt.}$

$$0 = \widetilde{\mathrm{H}}^{\mathrm{Sing}}_n(\mathrm{pt}) \to \widetilde{\mathrm{H}}^{\mathrm{Sing}}_n(X) \oplus \widetilde{\mathrm{H}}^{\mathrm{Sing}}_n(Y) \to \widetilde{\mathrm{H}}^{\mathrm{Sing}}_n(X \vee Y) \to \widetilde{\mathrm{H}}^{\mathrm{Sing}}_n(\mathrm{pt}) = 0,$$

so the map in the middle is an isomorphism. Verify that this map is indeed the assembly map. \Box

We can use p to define inductively a map $S^n \to S^n$ with degree 2. For that, we will use suspensions.

Definition 2.10. Let Σ : Top \rightarrow Top be the functor sending $X \in$ Top to the pushout

$$\begin{array}{c} X \times \{-1,1\} \longrightarrow X \times [-1,1] \\ \downarrow \qquad \qquad \downarrow \\ \{-1,1\} \longrightarrow \Sigma X \end{array}$$

Explicitly, $\Sigma X = X \times [-1, 1] / \sim$ where the equivalence relation identifies all points in $X \times \{-1\}$ and all point in $X \times \{1\}$ separetley. A map $f: X \to Y$ is sent to $\Sigma f: \Sigma X \to \Sigma Y$, given by $[(x,t)] \mapsto [(f(x),t)]$. **Example 2.11.** $\Sigma S^{n-1} \simeq S^n$. with homeomorphism given by

$$((x_0, \dots, x_{n-1}), t) \mapsto (\sqrt{1 - t^2} x_0, \dots, \sqrt{1 - t^2} x_{n-1}, t)$$

In particular, if $r: S^{n-1} \to S^{n-1}$ is the reflection of the first coordinate, then Σr is also the reflection of the first coordinate.

Proposition 2.12. Let $f: S^{n-1} \to S^{n-1}$, then $\deg(\Sigma f) = \deg(f)$.

Proof. This is the same idea as in the special case of reflection. Consider the covering $S^n = N \cup S$, such that under the identification $S^n = \Sigma S^{n-1}$, N corresponds to $S^{n-1} \times [0,1]$ and S corresponds to $S^{n-1} \times [-1,0]$. In particular, $\Sigma f(N) = N$, $\Sigma f(S) = S$. Note that $E = S^{n-1} \times \{0\}$, and $\Sigma f|_E = f$. By naturality of Mayer-Vietoris

$$0 = \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(N) \oplus \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(S) \longrightarrow \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(S^{n}) \xrightarrow{\sim} \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(E) \longrightarrow \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(N) \oplus \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(S) = 0$$

$$\downarrow^{\Sigma f_{*}} \qquad \qquad \qquad \downarrow^{f_{*}}$$

$$0 = \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(N) \oplus \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(S) \longrightarrow \widetilde{\mathrm{H}}_{n}^{\mathrm{Sing}}(S^{n}) \xrightarrow{\sim} \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(E) \longrightarrow \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(N) \oplus \widetilde{\mathrm{H}}_{n-1}^{\mathrm{Sing}}(S) = 0$$

so $\deg(\Sigma f) = \deg(f)$.

Corollary 2.13. Consider $\Sigma^{n-1}p: S^n \to S^n$, then $\deg(\Sigma^{n-1}p) = 2$.