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November 25, 2024

1 Naturality of Mayer-Vietoris

In the exercise, you showed that the long exact sequence in homology is natural. We will present
a solution, and use it show naturality of Mayer-Vietoris, which we will need today.

Lemma 1.1. A commuting diagram of short exact sequences of chain complexes

0 Ay — = B, 1 C, 0
J{f J{g h
0 Y Y NS} 0

induces a commuting square
H7L+1(Oo) # Hn(Ao)

s 8

Hoi1(CL) — Hy (A7)

Proof. Let [c] € Hyy1(Co), we first recall how d([c]) is defined. By surjectivity there is some
b € Bj4+1 such that j(b) = ¢, and c is a cycle, so

0= dc = j(b) = j(b)

and so by exactness there is a (unique) a € A,, such that i(a) = 9b. We defined d([c]) = [a] (you
showed that it is well-defined).

On the other hand, consider h(c) € C},,. We have j'(g(b)) = h(j(b)) = h(c), and f(a) € Aj,
satisfies i’ (f(a)) = g(i(a)) = g(9b) = dg(b ) so d([h(c)]) = [f(a)]. It follows that

doh([d])) = f([a]) = fod([d])
O

This shows naturality at d, it is easier for the other maps in the sequence (but we also only need it
at d today).



Proposition 1.2. Suppose X = U UV, X' =U' UV’ are open coverings, and suppose f: X — X’
restrict to f(U) CU’, f(V) CV'. Then Mayer-Vietoris is natural with respect to f:

S HOU3(X) —L— HS(UNV) —— -

s |

s IRHXY) T WU V) ——

Proof. 1t is enough to see that we have a commuting diagram of short exact sequences of chain
complexes

0 —— CUNY) —— G (U) & C¥(V) ——— (U +V) —— 0

lf* lf*eaf* lf*

0 —— CSU8(U' NV/) —— CIM(U) @ CIME(V) —— C3™8(U + V) —— 0

2 Degree

Consider a continuous map f : S® — S™ for n > 0 (where S° = {1,—1}). By functoriality, this
induces a map on (reduced) singular homology f,: H3"&8(S") — H5"8(S"). Fix an isomorphism
HSin8(8") ~ 7Z. Under such an isomorphism, we have f,: Z — Z.

Definition 2.1. The degree of f: S™ — S™ is defined as deg(f) = f.(1) € Z

A choice of a different isomorphism ﬁ,sling(S") ~ 7Z amounts to replacing 1 with -1, but because we
do it on both sides we will get the same degree. For n > 0, we could use unreduced homology, as
HSing(§n) ~ HSne(S"). Note moreover that for n = 0 there are only four maps S° — S° and we
can find their degrees explicitly (try!).

Proposition 2.2. The following are basic properties of the degree:

(1) deg(ids:) =1

(2) deg(fog) = deg(f)deg(g)

(3) The degree is homotopy invariant: If f ~ g then deg(f) = deg(g).
(4) If f is a homotopy equivalence, then deg(f) = +1.

Proof. (1) and (2) follow from functoriality. For (2), notice that (fog).(1) = f«(g«(1)) = f«(1)g«(1).
(3) follows from homotopy invariance of singular homology, and (4) from that fact that if g is
homotopy inverse to f then deg(f)deg(g) = 1. O

As examples of a map with degree —1, we have reflection along a single coordinate. We will first
do the case S°.



Lemma 2.3. Let r: S° — SY be the reflection 1,—1 — —1,1. Then deg(r) = —1.

Proof. Sing(SY) has only two O-simplices, corresponding to 41, and the 1-simplices are constant at
1 or —1 so they have a trivial boundary. Thus, Hgmg(S 9) is the kernel of the augmentation map

e: (1], [-1]) = Z,

and in particular HJ™#(59) is generated by [1] — [~1]. The map 7, then induces 7, ([1] — [~1])
[—1] — [1], so 7.« acts by multiplication with —1.

oo

For the reflection in S™, we could again compute on a generator directly, but this becomes harder.
Instead, we will prove by induction using the naturality of Mayer-Vietoris.

Proposition 2.4. Letr : S™ — S™ be given by r(xo,x1,...,%n) = (—Xo,T1,...,Ty), then deg(r) =
-1

Proof. By induction on n. The case n = 0 is the above Lemma, assume n > 0. Consider the
covering of S™ given by the north and south poles

N ={(zo,...,zn) € S™|zy, > 0} S ={(zo,...,x,) € S"|x, <0}
with intersection the equator
E= {(1’0, cee 7$n) € Sn‘xn = O}

Even though N and S are closed, they have neighborhoods N, S that deformation retracts to them,
and N NS deformation retracts to E, so we can use them in (reduced) Mayer-Vietoris. Moreover,
notice that r(N) = N and r(S) = S, so we can use naturality.

0 = H3"s(N) @ H"(S) —— Hme(S") —— H"(E) —— H"§(V) @ H25(S) = 0

n—1

0 = Hj"e(N) @ HY"8(S) —— H"8(S") —— H"§(B) —— H"5(V) @ Hy(S) =0

Notice that E ~ S"~! and r|g is the reflection along the first coordinate in S"~!. By the induction
hypothesis r, : Hif%(E) — Hilf%(E) is given by multiplication by —1, so by the above isomorphism

r,: HSng(§m) — HSing($™) also multiplies by —1. Thus deg(r) = —1. O
Corollary 2.5. The map —idgn: S™ — S™ sending (xq,...,T,) — (—xo,...,—x,) has degree
(1

Proof. 1t is the composition of n + 1 reflections. O

Already from this calculation we can deduce interesting results. A continuous tangent vector field
on S™ is a continuous map v: S™ — R"*! such that for every z € ", x 1 v(x).

Theorem 2.6 (Hairy Ball Theorem). There exists a non-vanishing continuous vector field on S™
(meaning v(x) # 0 for all z € S1) if and only if n is odd.



In the case n = 2, you can imagine that the vector field represents hairs on a hairy ball. The
non-existence for n = 2 tells us that we cannot comb a hairy ball without having hairs pointing up
(a schwanz).

Proof. Assume that such vector field exists. Because v(z) # 0, we may normalize so that ||[v(z)|| =1
by replacing v(x) with v(z)/||v(z)||. We will define a homotopy id ~ —id by drawing the arc from
x to —x through v(z). Explicitly, define h : S x I — S by h(x,t) = cos(nt)x + sin(nt)v(z), where
h(z,t) € S™ because ||h(z,t)|| = cos(rt)? + sin(wt)? = 1, and indeed h(z,0) = z and h(z,1) = —z.
Thus, 1 = deg(id) = deg(—id) = (—1)™ + 1, which implies that n is odd.

For n odd, there is a non-vanishing vector field given by v(x) = (xo, —21, %2, —Z3 ..., Tp-1, —Tn)-
O

To see an example of degree 2, we will have to start with S L. First, let us describe a generator of
H{™8(S1). We will think of S as the unit circle in C, and of Al as the interval I = [0,1]. Let
v,o0 : I — S! be given by

o(t) =e i
v, o define 1-simplicies in Sing(S!), and v — o is a cycle.

1

-1

Proposition 2.7. [v — o] is a generator of H}™8(S1).

Proof. Consider reduced Mayer-Vietoris for the covering S = NU S, with NNS = E ~ S°.
0 = H{"5(N) @ Hy"8(S) — H{™8(S"™) 5 Hy"*(B) — Hy"(N) & Hy"5(S) = 0

In particular, d is an isomorphism. Note that [v — o] is already split into a part in N and a part in
S, so by definition
d([v —o]) =0v =00 =[-1] — [1]

and we saw that [—1] — [1] is a generator of H3 "(E). O

Proposition 2.8. Consider S* as the unit circle in C. Then p: S* — S* given by p(z) = 2% has
degree 2.

2mit

Proof. After squaring, p.v(t) = e is the path going from 1 to itself counter-clockwise:

(™
7



In particular [p,v] = [v — o]. Similarly, p.o(t) = e~2™% goes from 1 to itself clockwise, so [p.o] =
—[v — o]. Tt follows that p.[v — o] = 2[v — o]. O

There is another way to see that deg(p) = 2. Consider S* as pointed by 1 € S'. Notice that p(—1) =
1 and so p factors through the quotient S'/{—1,1} — S'. Note moreover that S*/{—1,1} ~ StvS!.
Thus, p factors as a map S' — S' v S! — S', where the first map pinches S! in the middle and
the second map sends both copies through the identity.

St v St
Sl

On homology, this induces
HY™8(S7) — HY"S(S") @ H™8(5) — HY™5(S)

The first map sends a generator of H?i“g(S 1) to the same generator in both pinched circles 1 +— (1, 1),
and the second map adds the two coordinates (1,1) — 2.

We used the following fact about the homology of wedge:

Proposition 2.9. Let X,Y € Top,, such that x € X and * € Y have a contractible neighborhood,
then for all n > 0 the assembly map

H"e(X) @ HY™5(Y) — Hy"8(X VY)
is an isomorphism.

Proof. By the existence of a contractible neighborhood, we can use X,Y as a covering of X VY for
Mayer-Vietoris, with intersection X NY = pt.

0 = HS"8(pt) — AS"8(x) @ BSS(Y) — HS"8(X v Y) — HS™ (pt) = 0,
so the map in the middle is an isomorphism. Verify that this map is indeed the assembly map. [

We can use p to define inductively a map S™ — S™ with degree 2. For that, we will use suspensions.

Definition 2.10. Let X : Top — Top be the functor sending X € Top to the pushout

X x{-1,1} — X x[-1,1]

| -

{(-1,1} ———— %X

Explicitly, X = X x [-1,1]/ ~ where the equivalence relation identifies all points in X x {—1}
and all point in X x {1} separetley. A map f: X — Y is sent to Xf: ¥X — XY, given by

[(z, )] = [(f (), 1)].



Example 2.11. 5" ! ~ §”. with homeomorphism given by

((l’o,...ﬂl)n,]),t) = (\/ 1 —t21)0,..., Vv 1 —t2$n,1,t)

In particular, if » : S"~! — S§7~1 is the reflection of the first coordinate, then ¥r is also the
reflection of the first coordinate.

Proposition 2.12. Let f: S"~! — S"71 then deg(Xf) = deg(f).

Proof. This is the same idea as in the special case of reflection. Consider the covering S™ = NUJS,
such that under the identification S™ = 5"~ N corresponds to S"~! x [0, 1] and S corresponds to
Sn=1 % [~1,0]. In particular, Sf(N) = N, £f(S) = S. Note that E = S"~! x {0}, and Sf|g = f.
By naturality of Mayer-Vietoris

0= H3"8(N) @ H3"8(S) —— H3Me(S") —~ H)™$(E) —— H)MS(N) @ HY™$(S) = 0

JEf* lf*

0 = Hj"e(N) @ HY"8(S) —— H"8(S") —— Hy"§(E) —— H25(NV) @ Hy(S) =0

so deg(Xf) = deg(f). O
Corollary 2.13. Consider X" 'p: S — S™ then deg(X" p) = 2.
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