Algebraic topology - Recitation 4

November 25, 2024

1 Naturality of Mayer-Vietoris

In the exercise, you showed that the long exact sequence in homology is natural. We will present a solution, and use it show naturality of Mayer-Vietoris, which we will need today.

Lemma 1.1. *A commuting diagram of short exact sequences of chain complexes*

induces a commuting square

$$
\begin{array}{ccc}\n\mathrm{H}_{n+1}(C_{\bullet}) & \xrightarrow{d} & \mathrm{H}_{n}(A_{\bullet}) \\
\downarrow_{h} & & \downarrow_{f} \\
\mathrm{H}_{n+1}(C_{\bullet}') & \xrightarrow{d} & \mathrm{H}_{n}(A_{\bullet}')\n\end{array}
$$

Proof. Let $[c] \in H_{n+1}(C_{\bullet})$, we first recall how $d([c])$ is defined. By surjectivity there is some $b \in B_{n+1}$ such that $j(b) = c$, and *c* is a cycle, so

$$
0 = \partial c = \partial j(b) = j(\partial b)
$$

and so by exactness there is a (unique) $a \in A_n$ such that $i(a) = \partial b$. We defined $d([c]) = [a]$ (you showed that it is well-defined).

On the other hand, consider $h(c) \in C'_{n+1}$. We have $j'(g(b)) = h(j(b)) = h(c)$, and $f(a) \in A'_{n}$ satisfies $i'(f(a)) = g(i(a)) = g(\partial b) = \partial g(b)$, so $d([h(c)]) = [f(a)]$. It follows that

$$
d \circ h([c])) = f([a]) = f \circ d([c])
$$

 \Box

This shows naturality at *d*, it is easier for the other maps in the sequence (but we also only need it at *d* today).

Proposition 1.2. Suppose $X = U \cup V$, $X' = U' \cup V'$ are open coverings, and suppose $f: X \to X'$ *restrict to* $f(U) \subseteq U'$, $f(V) \subseteq V'$. Then Mayer-Vietoris is natural with respect to f:

Proof. It is enough to see that we have a commuting diagram of short exact sequences of chain complexes

$$
0 \longrightarrow C_{\bullet}^{\text{Sing}}(U \cap V) \longrightarrow C_{\bullet}^{\text{Sing}}(U) \oplus C_{\bullet}^{\text{Sing}}(V) \longrightarrow C_{\bullet}^{\text{Sing}}(U + V) \longrightarrow 0
$$

\n
$$
\downarrow f_* \qquad \qquad \downarrow f_*
$$

\n
$$
0 \longrightarrow C_{\bullet}^{\text{Sing}}(U' \cap V') \longrightarrow C_{\bullet}^{\text{Sing}}(U') \oplus C_{\bullet}^{\text{Sing}}(V') \longrightarrow C_{\bullet}^{\text{Sing}}(U' + V') \longrightarrow 0
$$

2 Degree

Consider a continuous map $f: S^n \to S^n$ for $n \geq 0$ (where $S^0 = \{1, -1\}$). By functoriality, this induces a map on (reduced) singular homology $f_* : \widetilde{H}_n^{\text{Sing}}(S^n) \to \widetilde{H}_n^{\text{Sing}}(S^n)$. Fix an isomorphism $\widetilde{H}_n^{\text{Sing}}(S^n) \simeq \mathbb{Z}$. Under such an isomorphism, we have $f_* : \mathbb{Z} \to \mathbb{Z}$.

Definition 2.1. The degree of $f: S^n \to S^n$ is defined as $\deg(f) = f_*(1) \in \mathbb{Z}$.

A choice of a different isomorphism $\widetilde{H}_n^{\text{Sing}}(S^n) \simeq \mathbb{Z}$ amounts to replacing 1 with -1, but because we do it on both sides we will get the same degree. For $n > 0$, we could use unreduced homology, as $H_n^{\text{Sing}}(S^n) \simeq \widetilde{H}_n^{\text{Sing}}(S^n)$. Note moreover that for $n = 0$ there are only four maps $S^0 \to S^0$, and we can find their degrees explicitly (try!).

Proposition 2.2. *The following are basic properties of the degree:*

- $(1) \deg(\text{id}_{S^n}) = 1$
- (2) deg($f \circ g$) = deg(f) deg(g)
- (3) *The degree is homotopy invariant: If* $f \sim g$ *then* deg(*f*) = deg(*g*).
- (4) If *f* is a homotopy equivalence, then $\deg(f) = \pm 1$.

Proof. (1) and (2) follow from functoriality. For (2), notice that $(f \circ g)_*(1) = f_*(g_*(1)) = f_*(1)g_*(1)$. (3) follows from homotopy invariance of singular homology, and (4) from that fact that if *g* is homotopy inverse to f then $\deg(f) \deg(q) = 1$. \Box

As examples of a map with degree −1, we have reflection along a single coordinate. We will first do the case S^0 .

Lemma 2.3. *Let* $r: S^0 \to S^0$ *be the reflection* $1, -1 \mapsto -1, 1$ *. Then* deg(*r*) = -1*.*

Proof. Sing(S^0) has only two 0-simplices, corresponding to ± 1 , and the 1-simplices are constant at 1 or -1 so they have a trivial boundary. Thus, $\widetilde{H}_0^{\text{Sing}}(S^0)$ is the kernel of the augmentation map

$$
\epsilon\colon \mathbb{Z}\langle [1], [-1]\rangle \to \mathbb{Z},
$$

and in particular $\widetilde{H}_0^{\text{Sing}}(S^0)$ is generated by $[1] - [-1]$. The map r_* then induces $r_*([1] - [-1]) =$ $[-1] - [1]$, so r_* acts by multiplication with -1 .

For the reflection in $Sⁿ$, we could again compute on a generator directly, but this becomes harder. Instead, we will prove by induction using the naturality of Mayer-Vietoris.

Proposition 2.4. Let $r: S^n \to S^n$ be given by $r(x_0, x_1, \ldots, x_n) = (-x_0, x_1, \ldots, x_n)$, then $\deg(r) =$ −1

Proof. By induction on *n*. The case $n = 0$ is the above Lemma, assume $n > 0$. Consider the covering of $Sⁿ$ given by the north and south poles

$$
N = \{(x_0, \dots, x_n) \in S^n | x_n \ge 0\}
$$

$$
S = \{(x_0, \dots, x_n) \in S^n | x_n \le 0\}
$$

with intersection the equator

$$
E = \{(x_0, \ldots, x_n) \in S^n | x_n = 0\}.
$$

Even though *N* and *S* are closed, they have neighborhoods \tilde{N} , \tilde{S} that deformation retracts to them, and $\tilde{N} \cap \tilde{S}$ deformation retracts to *E*, so we can use them in (reduced) Mayer-Vietoris. Moreover, notice that $r(N) = N$ and $r(S) = S$, so we can use naturality.

$$
0 = \widetilde{H}_n^{\text{Sing}}(N) \oplus \widetilde{H}_n^{\text{Sing}}(S) \longrightarrow \widetilde{H}_n^{\text{Sing}}(S^n) \longrightarrow \widetilde{H}_{n-1}^{\text{Sing}}(E) \longrightarrow \widetilde{H}_{n-1}^{\text{Sing}}(N) \oplus \widetilde{H}_{n-1}^{\text{Sing}}(S) = 0
$$

$$
\downarrow_{r*} \qquad \qquad \downarrow_{r*}
$$

$$
0 = \widetilde{H}_n^{\text{Sing}}(N) \oplus \widetilde{H}_n^{\text{Sing}}(S) \longrightarrow \widetilde{H}_n^{\text{Sing}}(S^n) \longrightarrow \widetilde{H}_{n-1}^{\text{Sing}}(E) \longrightarrow \widetilde{H}_{n-1}^{\text{Sing}}(N) \oplus \widetilde{H}_{n-1}^{\text{Sing}}(S) = 0
$$

Notice that $E \simeq S^{n-1}$, and $r|_E$ is the reflection along the first coordinate in S^{n-1} . By the induction hypothesis r_* : $\widetilde{H}^{\text{Sing}}_{n-1}(E) \to \widetilde{H}^{\text{Sing}}_{n-1}(E)$ is given by multiplication by -1 , so by the above isomorphism r_* : $\widetilde{H}_n^{\text{Sing}}(S^n) \to \widetilde{H}_n^{\text{Sing}}(S^n)$ also multiplies by −1. Thus deg(*r*) = −1. \Box

Corollary 2.5. *The map* $-i d_{S^n} : S^n \to S^n$ sending $(x_0, \ldots, x_n) \mapsto (-x_0, \ldots, -x_n)$ has degree $(-1)^{n+1}$

Proof. It is the composition of $n + 1$ reflections.

 \Box

Already from this calculation we can deduce interesting results. A *continuous tangent vector field* on S^n is a continuous map $v: S^n \to \mathbb{R}^{n+1}$ such that for every $x \in S^n$, $x \perp v(x)$.

Theorem 2.6 (Hairy Ball Theorem)**.** There exists a non-vanishing continuous vector field on *S n* (meaning $v(x) \neq 0$ for all $x \in S^1$) if and only if *n* is odd.

In the case $n = 2$, you can imagine that the vector field represents hairs on a hairy ball. The non-existence for $n = 2$ tells us that we cannot comb a hairy ball without having hairs pointing up (a schwanz).

Proof. Assume that such vector field exists. Because $v(x) \neq 0$, we may normalize so that $||v(x)|| = 1$ by replacing $v(x)$ with $v(x)/||v(x)||$. We will define a homotopy id \sim −id by drawing the arc from *x* to $-x$ through $v(x)$. Explicitly, define $h: S^1 \times I \to S^1$ by $h(x,t) = \cos(\pi t)x + \sin(\pi t)v(x)$, where $h(x,t) \in S^n$ because $||h(x,t)|| = cos(\pi t)^2 + sin(\pi t)^2 = 1$, and indeed $h(x,0) = x$ and $h(x,1) = -x$. Thus, $1 = \deg(id) = \deg(-id) = (-1)^n + 1$, which implies that *n* is odd.

For *n* odd, there is a non-vanishing vector field given by $v(x) = (x_0, -x_1, x_2, -x_3, \ldots, x_{n-1}, -x_n)$.

To see an example of degree 2, we will have to start with $S¹$. First, let us describe a generator of $H_1^{\text{Sing}}(S^1)$. We will think of S^1 as the unit circle in \mathbb{C} , and of Δ^1 as the interval $I = [0,1]$. Let $\nu, \sigma: I \to S^1$ be given by

$$
\nu(t) = e^{i\pi t}
$$

$$
\sigma(t) = e^{-i\pi t}
$$

ν, *σ* define 1-simplicies in Sing(*S*¹), and *ν* − *σ* is a cycle.

Proposition 2.7. $[\nu - \sigma]$ *is a generator of* $H_1^{\text{Sing}}(S^1)$ *.*

Proof. Consider reduced Mayer-Vietoris for the covering $S^1 = N \cup S$, with $N \cap S = E \simeq S^0$.

$$
0 = \widetilde{H}_1^{\text{Sing}}(N) \oplus \widetilde{H}_1^{\text{Sing}}(S) \to \widetilde{H}_1^{\text{Sing}}(S^n) \xrightarrow{d} \widetilde{H}_0^{\text{Sing}}(E) \to \widetilde{H}_0^{\text{Sing}}(N) \oplus \widetilde{H}_0^{\text{Sing}}(S) = 0
$$

In particular, *d* is an isomorphism. Note that $[\nu - \sigma]$ is already split into a part in *N* and a part in *S*, so by definition

$$
d([\nu - \sigma]) = \partial \nu = \partial \sigma = [-1] - [1]
$$

 \Box

and we saw that $[-1] - [1]$ is a generator of $\widetilde{H}_0^{\text{Sing}}(E)$.

Proposition 2.8. *Consider* S^1 *as the unit circle in* \mathbb{C} *. Then* $p: S^1 \to S^1$ *given by* $p(z) = z^2$ *has degree 2.*

Proof. After squaring, $p_*\nu(t) = e^{2\pi i t}$ is the path going from 1 to itself counter-clockwise:

In particular $[p_* \nu] = [\nu - \sigma]$. Similarly, $p_* \sigma(t) = e^{-2\pi i t}$ goes from 1 to itself clockwise, so $[p_* \sigma] =$ $-[\nu - \sigma]$. It follows that $p_* [\nu - \sigma] = 2[\nu - \sigma]$. \Box

There is another way to see that $deg(p) = 2$. Consider S^1 as pointed by $1 \in S^1$. Notice that $p(-1) =$ 1 and so *p* factors through the quotient $S^1/\{-1, 1\} \rightarrow S^1$. Note moreover that $S^1/\{-1, 1\} \simeq S^1 \vee S^1$. Thus, *p* factors as a map $S^1 \to S^1 \vee S^1 \to S^1$, where the first map pinches S^1 in the middle and the second map sends both copies through the identity.

On homology, this induces

$$
\operatorname{H}^{\operatorname{Sing}}_1(S^1) \to \operatorname{H}^{\operatorname{Sing}}_1(S^1) \oplus \operatorname{H}^{\operatorname{Sing}}_1(S^1) \to \operatorname{H}^{\operatorname{Sing}}_1(S^1)
$$

The first map sends a generator of $H_1^{\text{Sing}}(S^1)$ to the same generator in both pinched circles $1 \mapsto (1,1)$, and the second map adds the two coordinates $(1, 1) \mapsto 2$.

We used the following fact about the homology of wedge:

Proposition 2.9. *Let* $X, Y \in \text{Top}_*$ *, such that* $* \in X$ *and* $* \in Y$ *have a contractible neighborhood, then for all n* ≥ 0 *the assembly map*

$$
\widetilde{\mathrm{H}}_n^{\mathrm{Sing}}(X) \oplus \widetilde{\mathrm{H}}_n^{\mathrm{Sing}}(Y) \to \widetilde{\mathrm{H}}_n^{\mathrm{Sing}}(X \vee Y)
$$

is an isomorphism.

Proof. By the existence of a contractible neighborhood, we can use *X,Y* as a covering of $X \vee Y$ for Mayer-Vietoris, with intersection $X \cap Y =$ pt.

$$
0 = \widetilde{\mathrm{H}}_n^{\mathrm{Sing}}(\mathrm{pt}) \to \widetilde{\mathrm{H}}_n^{\mathrm{Sing}}(X) \oplus \widetilde{\mathrm{H}}_n^{\mathrm{Sing}}(Y) \to \widetilde{\mathrm{H}}_n^{\mathrm{Sing}}(X \vee Y) \to \widetilde{\mathrm{H}}_n^{\mathrm{Sing}}(\mathrm{pt}) = 0,
$$

so the map in the middle is an isomorphism. Verify that this map is indeed the assembly map. \Box

We can use p to define inductively a map $S^n \to S^n$ with degree 2. For that, we will use suspensions.

Definition 2.10. Let Σ : Top \rightarrow Top be the functor sending $X \in$ Top to the pushout

$$
X \times \{-1, 1\} \longrightarrow X \times [-1, 1]
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\{-1, 1\} \longrightarrow \Sigma X
$$

Explicitly, $\Sigma X = X \times [-1,1] / \sim$ where the equivalence relation identifies all points in $X \times \{-1\}$ and all point in $X \times \{1\}$ separetley. A map $f: X \to Y$ is sent to $\Sigma f: \Sigma X \to \Sigma Y$, given by $[(x, t)] \mapsto [(f(x), t)].$

Example 2.11. $\Sigma S^{n-1} \simeq S^n$. with homeomorphism given by

$$
((x_0, \ldots, x_{n-1}), t) \mapsto (\sqrt{1-t^2}x_0, \ldots, \sqrt{1-t^2}x_{n-1}, t)
$$

In particular, if $r : S^{n-1} \to S^{n-1}$ is the reflection of the first coordinate, then Σr is also the reflection of the first coordinate.

Proposition 2.12. *Let* $f: S^{n-1} \to S^{n-1}$, *then* deg(Σf) = deg(f)*.*

Proof. This is the same idea as in the special case of reflection. Consider the covering $S^n = N \cup S$, such that under the identification $S^n = \sum S^{n-1}$, *N* corresponds to $S^{n-1} \times [0,1]$ and *S* corresponds to $S^{n-1} \times [-1, 0]$. In particular, $\Sigma f(N) = N$, $\Sigma f(S) = S$. Note that $E = S^{n-1} \times \{0\}$, and $\Sigma f|_E = f$. By naturality of Mayer-Vietoris

$$
0 = \widetilde{H}_n^{\text{Sing}}(N) \oplus \widetilde{H}_n^{\text{Sing}}(S) \longrightarrow \widetilde{H}_n^{\text{Sing}}(S^n) \longrightarrow \widetilde{H}_{n-1}^{\text{Sing}}(E) \longrightarrow \widetilde{H}_{n-1}^{\text{Sing}}(N) \oplus \widetilde{H}_{n-1}^{\text{Sing}}(S) = 0
$$

$$
\downarrow \Sigma f_*
$$

$$
0 = \widetilde{H}_n^{\text{Sing}}(N) \oplus \widetilde{H}_n^{\text{Sing}}(S) \longrightarrow \widetilde{H}_n^{\text{Sing}}(S^n) \longrightarrow \widetilde{H}_{n-1}^{\text{Sing}}(E) \longrightarrow \widetilde{H}_{n-1}^{\text{Sing}}(N) \oplus \widetilde{H}_{n-1}^{\text{Sing}}(S) = 0
$$

 \Box

so deg(Σf) = deg(f).

Corollary 2.13. *Consider* $\Sigma^{n-1}p: S^n \to S^n$, *then* deg($\Sigma^{n-1}p$) = 2*.*