
Algebraic topology - Recitation 5

December 2, 2024

1 Comments on homework

I will start by presenting common comments I had on homework 2.

exercise 1.1. Consider the house with two rooms. For ease of drawing, we will consider the simpler
T shape T . As the hint suggested, we will look at an ϵ-neighborhood T ⊆ N . The first common
error was in defining the retract r : N ! T as sending each point in N to the nearest point in T .
This operation is not continuous near the corners. Instead, we can take inspiration from physics —
think of T as a heavy rigid mass, and N as a cloud around it that is gravitationally pulled. This
will be a continuous deformation retract, due to the continuous nature of reality. We can make
this formal (write the laws of motion), but we could also produce simpler equations based on this
idea. The second step is to notice that N is homeomorphic to the disk, so it is contractible to a
point. However, another common error is that a deformation retract on N does not restrict to a
deformation retract on T , as the path a point x ∈ T goes through does not have to be contained in
T . To fix this, apply r to this path.

exercise 1.2. In the question named “long exact sequence in homology”, you were asked to prove
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the nine lemma. Consider the commuting diagram

0 0 0

0 A3 B3 C3 0

0 A2 B2 C2 0

0 A1 B1 C1 0

0 0 0

where the rows and the middle column are exact. Then the first column is exact if and only if the
last column is exact. Almost all of you proved it by diagram chasing, which is a great exercise, but
not the most efficient solution. Instead, start by only assuming that the middle column is a chain
complex (with 0’s extended in both direction), meaning that the composition is 0. It follows by the
exactness of the rows that the first and third column are also chain complexes:

• Any c ∈ C3 can be lifted by surjectivity to b ∈ B3, which is mapped to 0 ∈ B1, which is
mapped to 0 in C1.

• Any a ∈ A3 is mapped to 0 in B1, so by injectivity it is also mapped to 0 in A1.

So we have an exact sequence of chain complexes

0 ! A• ! B• ! C• ! 0.

Note that a chain complex B• is exact iff Hn(B•) = 0 for all n ∈ Z. Thus, assuming that B• is
exact, we get a long exact sequence in homology

. . . 0 ! Hn(A•) ! Hn−1(C•) ! 0 . . .

and in particular A• is exact if and only if C• is exact.

2 CW complexes

A CW-complex, or cellular complex, is a space that is built by iteratively gluing disks along their
boundary.

Definition 2.1. A cell structure on a space X is a filtration

X0 ⊆ X1 ⊆ X2 ⊆ . . . X

where Xn is called the n-skeleton, together with a set of n-cells {Φn
α : Dn ! Xn}α∈In

for n ≥ 0,
such that:
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(1) The boundary of every n-cell is mapped to the n − 1-skeleton φn
α := Φn

α|Sn−1 : Sn−1 ! Xn−1

(where S−1 = X−1 = ∅). φn
α are called the attaching maps.

(2) Xn is produced from Xn−1 by gluing the n-cells along their boundary Sn−1 ↪! Dn via the
attaching maps: ⊔

α∈In
Sn−1 ⊔

α∈In
Dn

Xn−1 Xn

[φn
α]α∈In [Φn

α]α∈In

⌟

(3) X =
⋃

n<∞ Xn

A CW complex is a space which has a cell structure. Note that to define the cell structure we
actually need the cells, as the skeletons are built from the cells, but the conditions are easier to
state this way.

For n = 0, as
⊔

α∈In
Sn−1 = X−1 = ∅, we get X0 =

⊔
α∈I0

D0, i.e. a discrete space of points,
without gluing data. If X is n-dimensional, i.e. doesn’t have any cells higher than n, then Xn =
Xn+1 = · · · = X, and we will write the filtration only up to level n.

Example 2.2. There are multiple cell structures on Sn. The standard one consists of a single
0-cell and a single n-cell, such that the filtration is given by

pt = pt = · · · = pt ⊆ Sn

and the n-cell is the map Φ: Dn ! Sn which collapses the boundary to the point φ : Sn−1 ! pt.
Indeed, we have the pushout

Sn−1 Dn

pt Dn/Sn−1 ≃ Sn

⌟

Example 2.3. For another cell structure on Sn, consider the inclusion of the equator Sk−1 ⊆ Sk.
This produces a filtration

S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sn.

Notice that each Sk is produced from gluing the northern and southern hemispheres Φk
N , Φk

S : Dk !
Sk along the equator φk

N = φk
S = idSk−1 (S0 is just two points without gluing). That is, we have a

pushout square
Sk−1 ⊔ Sk−1 Dn ⊔ Dn

Sk−1 Sk

[id
Sk−1 ,id

Sk−1 ]

⌟

Thus, we get a cell structure consisting of 2 k-cells for every 0 ≤ k ≤ n.

Example 2.4. Consider RPn, the space of lines in Rn+1, or equivalently Sn/−x ∼ x. The equator
inclusion Sk−1 ⊆ Sk induce inclusions RPk−1 ⊆ RPk, which defines a filtration

RP0 ⊆ RP1 ⊆ RP2 ⊆ ... ⊆ RPn.
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In each dimension 0 ≤ k ≤ n we have a single k-cell

Φk : Dk
Φk

N
↪−−! Sk q−! RPk.

On the boundary Sk−1 we just take the quotient −x ∼ x and produce RPk−1, so φk = q : Sk−1 !
RPk−1. Moreover, for any [x] ∈ RPk we could choose the representative x ∈ Sk to come from the
northern hemisphere, and this representative is unique in the interior. Thus, RPk is produced from
RPk−1 by attaching a single k-cell along the quotient map

Sk−1 Dn

RPk−1 RPk

q

⌟

In the exercise you are supposed to use this filtration on RPn to compute its homology using Mayer-
Vietoris. Soon we will generalize this method to calculate the homology of arbitrary CW-complexes.
Notice that while CW-complexes are somewhat similar to semisimplicial spaces, they are usually
much easier to define, because we don’t have to triangulate anything.
In the rest of the recitation we will gather more examples of CW-complexes, so we will have things
to calculate later.

Example 2.5. There are examples of CW-complexes with infinite dimension. In the exercise you
saw the infinite sphere

S0 ⊆ S1 ⊆ · · · ⊆ S∞ = {(x0, x1, . . . )|
∑

i

x2
i = 1, xi = 0 for all but finitely many i}.

This cell structure has 2 cells in each dimension. Define RP∞ = S∞/ − x ∼ x, this has a cellular
structure with 1 cell in each dimension

RP0 ⊆ RP1 ⊆ · · · ⊆ RP∞.

Example 2.6. The complex projective space CPn is the topological space of 1-dimensional sub-
spaces (complex lines) in Cn+1. Alternatively, the unit sphere in Cn+1 is identified with S2n+1, and
we define CPn = S2n+1/∀λ ∈ U(1) λx ∼ x with the quotient topology (U(1) is the group of unit
vectors in C, which acts on S2n+1). This quotient comes with a quotient map q : S2n+1 ! CPn. To
define the cell structure on CPn, we will describe how CPn is constructed from CPn−1 by attaching
a single 2n-cell. Consider the inclusion D2n ↪! S2n+1, where D2n is considered as the unit ball in
Cn, given by Consider the subspace

(z0, . . . , zn−1) 7! (z0, . . . , zn−1,
√

1 − (|z0|2 + · · · + |zn−1|2)).

The image of this inclusion is the subspaces

R = {z = (z0, . . . , zn) ∈ S2n+1 | zn is real and non-negative} ⊆ S2n+1.

The 2n-cell of CPn is given by
Φ: D2n ↪! S2n+1 q−! CPn.
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The boundary S2n−1 is sent by the inclusion to {(z0, . . . , zn−1, 0)}, which is mapped by q to CPn−1 ⊆
CPn. Moreover, for any [z] ∈ CPn we may assume z ∈ R by rotating until zn is a non-negative real
(if zn = reiθ, multiply by e−iθ), and on the interior there is only a single representative from R.
Thus CPn is produced from CPn−1 by attaching a single 2n-cell along the quotient map

S2n−1 D2n

CPn−1 RPn

q

⌟

Taking the union over all n, we get CP∞, which has a single cell in every even degree.

Example 2.7. We saw many constructions given by identifying edges on a polygon, those are
actually CW complexes. Consider the surface of genus Σg. Cutting between the holes, we see that
Σg can be formed by gluing tori with 2 holes cut out along their holes, with the edges having only
a single. This is equivalent to taking a polygon with 4g and identifying the edges according to

a1, b1, a1, b1, a2, b2, a2, b2, . . . , ag, bg, ag, bg

To interpret this as a cellular complex, notice that all vertices of this polygon are identified to be
the same point, and there are 2g distinct edges after identification. Thus, we can get a cell structure
with a single 0-cell, 2g 1-cells and a single 2-cell

pt ⊆
g∨

i=1
S1

ai
∨ S1

bi
⊆ Σg

and the attaching map of the 2-cell φ : S1 !
∨g

i=1 S1
ai

∨ S1
bi

follows the path described above.
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