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1 Bicomplexes
Many important filtered complexes, on which we run spectral sequences, arise from bicomplexes.
Definition 1.1. A bicomplex is (approximately) a complex of chain complexes. Explicitly, it is a
Z × Z-diagram of abelian groups

B−1,1 B0,1 B1,1

B−1,0 B0,0 B1,0

B−1,−1 B0,−1 B1,−1

∂∨
−1,1

∂<
0,1

∂∨
0,1

∂<
1,1

∂∨
1,1

∂∨
−1,0

∂<
0,0

∂∨
0,0

∂<
1,0

∂∨
1,0

∂<
0,−1 ∂<

1,−1

such that

(1) ∂<
p,q∂<

p+1,q = 0

(2) ∂∨
p,q∂∨

p,q+1 = 0

(3) The obvious condition will be that each square commutes. However, to avoid later book-
keeping, we will assert that every square anticommutes ∂<

p+1,q∂∨
p+1,q+1 = −∂∨

p,q+1∂<
p+1,q+1.

A commuting bicomplex can be modified to an anticommuting bicomplex, e.g. by negating
every even horizontal map.

Given a bicomplex, we can construct a chain complex called the total complex

Tot(B)n =
⊕

p+q=n

Bp,q

where the boundary

∂ : Tot(B)n ! Tot(B)n−1⊕
p+q=n

Bp,q !
⊕

p′+q′=n−1
Bp′,q′

is given by ∂< +∂∨ in every coordinate. Indeed, ∂2 = (∂< +∂∨)2 = ∂<2 +∂<∂∨ +∂∨∂< +∂∨2 = 0.
The total complex then has two natural increasing filtration:
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• the vertical filtration Tot(B)∨(s)
n =

⊕
p≤s Bp,n−p, and

• the horizontal filtration Tot(B)<(s)
n =

⊕
q≤s Bn−q,p.

We could transform them to a decreasing filtration by switching s with −s, but it is also fine to
work with increasing filtration; the differentials simply go down instead of up.
From now on assume that Bp,q is non-zero only is a bounded part of Z2, so we won’t have convergence
issues. The vertical and horizontal filtrations will produce different spectral sequences, but they
can both be used to calculate the same homology Hn(Tot(B)). In fact, it is often the case that
Hn(Tot(B)) is easy to calculate with one filtration, and we use this to figure something out about
the other filtration.
To be more explicit, let us describe the 0 and 1 pages in both filtrations. For the vertical filtration,
the associated graded is

E∨0
n,s =

⊕
p≤s

Bp,n−p/
⊕

p≤s−1
Bp,n−p = Bs,n−s

with the differerntial coming from the vertical boundary ∂∨ : Bs,n−s ! Bs,n−1−s Thus the 1-page
is the vertical homology E∨1

n,s = Hn(Bs,•−s) = Hn−s(Bs,•). Similarly, the associated graded of the
horizontal filtration is Bn−s,s and the 1-page is the horizontal homology E<1

n,s = Hn−s(B•,s).

Example 1.2 (The snake lemma). Consider the following bicomplex:

0 0 0 0 0

0 C B A 0

0 F E D 0

0 0 0 0 0

γ −β α

such that the rows are exact and the squares anticommute (they commute when we have β instead
of −β), where F is in the (0, 0) coordinate. As all rows are exact, the horizontal homology will be
0, so the horizontal spectral sequence stabilizes at the 1-page to 0. In particular, E<∞

n,s = 0, which
is the associated graded of some filtration on Hn(Tot(B)), so Hn(Tot(B)) = 0. Over to the vertical
filtration, let us start with the 0-page E∨0

n,s = Bs,n−s:

0 0 D A

0 E B 0

F C 0 0

α

−β

γ
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The 1-page is then

0 0 coker(α) ker(α)

0 coker(β) ker(β) 0

coker(γ) ker(γ) 0 0

where the arrows go down in the increasing filtration. The 2-page then has the form

0 0 X ?

0 ? ? 0

? Y 0 0
where the differentials at the ? squares will always hit 0, so the ? squares stabilize to the ∞-page.
However, we already know that Hn(Tot(B)) = 0, so the ∞-page is 0, so ? = 0. Similarly, from the
3-rd page onwards the X, Y squares stabilize at 0, so the map X ! Y has to be an isomorphism.
However X is the kernel of coker(α) ! coker(β) and Y is the cokernel of ker(β) ! ker(γ), in
particular we get a map

ker(γ) ↠ Y
∼
 − X ↪! coker(α)

whose composition we will call d : ker(γ) ↪! coker(α). This map fits in an exact sequence

ker(α)! ker(β)! ker(γ) d−! coker(α)! coker(β)! coker(γ).

2 Non-Abelian groups
Suppose X, Y are pointed spaces, and consider the wedge X ∨ Y :

Every loop in X ∨ Y can be decomposed into a composition of loops in X and loops in Y , so the
two subgroups π1(X), π1(Y ) ≤ π1(X ∨ Y ) generate π1(X ∨ Y ). Suppose a ∈ π1(X) and b ∈ π1(Y ).
Q: what is the relationship between the compositions ab and ba in π1(X ∨ Y )?
A: Nothing! We cannot switch the order of the two maps without collapsing one of them to the
point, in which case it is the identity element.
To formalize this we introduce the free product.
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2.1 Free product

Definition 2.1. Let {Gα}α∈I be groups. Define the free product ∗α∈IGα as the group of formal
words g1g2 . . . gn with gi ∈ Gαi

\ {e} and adjacent gi, gi+1 are not from the same group αi ̸= αi+1.
Composition is given by concatenation (g1 . . . gn)(g′

1 . . . g′
k) = g1 . . . gng′

1 . . . g′
k where if gn and g′

1
belong to the same group we multiply them. The unit is the empty word, and the inverse is
g−1

n . . . g−1
1 .

You will see later that π1(
∨

α∈I Xα) = ∗α∈Iπ1(Xα). For now, we will talk only about the algebraic
side.
There are obvious homomorphisms iα : Gα ! ∗α∈IGα given by the length 1 words (or 0 for the
unit).

Proposition 2.2. ∗α∈IGα is the coproduct of Gα in Grp

Proof. Given homomorphisms fα : Gα ! H we can define f : ∗α∈I Gα ! K by

f(g1g2 . . . gn) = fα1(g1)fα2(g2) . . . fαn(gn)

where gi ∈ Gαi . This homomorphism satisfies f ◦ iα = fα, and if another f̃ satisfies f̃ ◦ iα = fα,
then

f̃(g1 . . . gn) = f̃(g1) . . . f̃(gn) = fα1(g1) . . . fαn
(gn) = f(g1 . . . gn)

so f is unique.

Definition 2.3. The free group on a set S is ⟨S⟩ := ∗s∈SZ⟨si⟩. Explicitly, elements of ⟨S⟩ are
formal words sk1

1 sk2
2 . . . skn

n for si ∈ S, ki ∈ Z. The free group extends to a functor ⟨−⟩ : Set! Grp.

Proposition 2.4. ⟨−⟩ : Set! Grp is left adjoint to the forgetful functor U : Grp! Set, meaning
there is a (natural) bijection homSet(S, U(G)) ≃ homGrp(⟨S⟩, G).

Proof. A map of set S ! U(G) corresponds to choosing elements gs ∈ G for every s ∈ S. Choosing
an element corresponds to a homomorphism fs : Z! G. By the universal property of coproducts,
such a collection of homomorphisms corresponds to a single homomorphism f : ∗s∈S Z ! G. You
can fill in the details of naturality.

Every group can be represented as a quotient of a free group; this is the “generators and relations”
representation ⟨S | R⟩ = ⟨S⟩/N(R) for R ⊆ ⟨S⟩. We will later use this representation to show that
every group is the π1 of some space.
The next example is of a free product which is not a free group.

Example 2.5. Consider the projective special linear group PSL(2,Z) := SL(2,Z)/{I, −I}. Using
row reductions and the Euclidean algorithm, it can be shown that PSL(2,Z) is generated by two
elements

α =
(

0 −1
1 0

)
β =

(
1 −1
1 0

)
Consider the inclusion of cyclic subgroups ⟨α⟩, ⟨β⟩ ↪! PSL(2,Z), which are of order 2 and 3 respec-
tively. By the universal property, we get a homomorphism ⟨α⟩ ∗ ⟨β⟩! PSL(2,Z), we want to prove
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that this map is an isomorphism, implying PSL(2,Z) ≃ Z/2Z ∗Z/3Z. Elements of the free product
w ∈ ⟨α⟩ ∗ ⟨β⟩ are words of the form w = g1 . . . gn, where gi alternates between α and β±1, and the
above map sends w to the corresponding multiplication in PSL(2,Z). The fact the α, β generate
PSL(2,Z) precisely tells us that this map is surjective. To show that this map is injective, we need
to show that the only word with trivial multiplication is the trivial word.
PSL(2,Z) is also called the modular group, due to its action on the upper half complex plain by(

a b
c d

)
.z = az + b

cz + d

In particular, PSL(2,Z) acts on R. Our two generators act as

α.z = −1
z

β.z = z − 1
z

= 1 − 1
z

β−1.z = 1
1 − z

Notice that α(R>0) ⊆ R<0 and β±1(R<0) ⊆ R>0 Suppose there exists a non-trivial word w =
g1 . . . gn ∈ ⟨α⟩ ∗ ⟨β⟩ which has a trivial multiplication in PSL(2,Z). In particular w(R>0) = R>0
and w(R<0) = R<0, so n must be even. We may assume that w ends with α, conjugating by
α if necessary, so w = β±1 . . . α. Now if w = β . . . α, then w(R>0) ⊆ β(R<0) ⊆ R>1, and if
w = β−1 . . . α, then w(R>0) ⊆ β−1(R<0) ⊆ R<1. In particular, w can’t be the identity on R<0.

5


	1 Bicomplexes
	2 Non-Abelian groups
	2.1 Free product


