Algebraic topology - Recitation 8

December 23, 2024

1 Comments on homework

1.1 CW-complexes

First, a general note on the definition of CW-complexes. We defined a CW-structure as a filtration $\emptyset = X^{-1} \subseteq X^0 \subseteq \cdots \subseteq X$ with cells $\Phi^n_{\alpha} \colon D^n \to X^n$ whose boundaries land in X^{n-1} , such that X^n is built from X^{n-1} by gluing the *n*-cells along their boundary. It is good to reiterate the difference between the *data* of a CW-complex and the *conditions* this data satisfies. The filtration is not a crucial part of the data, as it can be reconstructed from the cells $\Phi_{\alpha}^{n} : D^{n} \to X$. To reconstruct the filtration fromn this data, start with $X⁰$, which only depends on the number of 0-cells, and iteratively build X^n from X^{n-1} by gluing the *n*-cells along their boundary. In fact, we see that we don't even need the full *n*-cells, but only their boundary maps $\varphi_{\alpha}^{n} : S^{n-1} \to X$.

However, if we are given only the data of the *n*-cells, we still need to check that it satisfies the conditions of a CW-complex. To phrase this condition for *n*-cells, we need to first define X^{n-1} , which is defined inductively if we checked the condition for lower cells. For that reason, it is simpler to give the filtration as part of the definition.

Suppose $Y \subseteq X$ is a subcomlex. Visually, X is built from cells of various dimensions, and some of them belong to *Y*. In X/Y , all the cells that came from *Y* are replaced by a single point. Thus, X/Y has all the cells in *X* which are not in *Y* together with a new 0-cell $[Y] \in X/Y$. For $\Phi_{\alpha}^{n}: D^{n} \to X$ a cell that does not belong to *Y*, the corresponding cell in *X/Y* will be $q \circ \Phi_{\alpha}^{n}$. Note that at every filtration level X^n , the cells coming from Y that appear in X^n are those of dimension ≤ *n*, so $X^n \cap Y = Y_n$. The corresponding filtration is then $(X/Y)^n = X^n/Y^n$, and the boundary of $q \circ \Phi_{\alpha}^{n}$ indeed lands in X^{n-1}/Y^{n-1} .

A common mistake was taking all the cells (including those from *Y*) and replacing them with $q \circ \Phi_{\alpha}^{n}$. To see how this fails, consider $X/X =$ pt. Even if X had higher cells, X/X cannot have any cell other than a single 0-cell. Generally, the gluing should not identify any point in the interior of a cell, and if Φ_{α}^{n} is a cell from *Y*, then $q \circ \Phi_{\alpha}^{n}$ identifies all of it's point to a single point.

Let us see why the gluing condition is satisfied. For $n = 0$, it is enough to count and see that we have $|I_0| - |J_0| + 1$ 0-cells. A map $X^n/Y^n \to Z$ is equivalent to a map $X^n \to Z$ that is constant on *Y*^{*n*}. Giving a map from $X^n \to Z$ is equivalent to giving maps from X^{n-1} and from $\bigsqcup_{\alpha \in I_n} D^n$ that agree on the boundary, and saying that the map is constant on Y is equivalent to factoring through X^{n-1}/Y^{n-1} and only including those *n*-cells which are not in *Y*. Thus, we get the pushout square

It is important that we removed the *n*-cells coming from Y – else we could have a non-constant map $D^n \to Z$ from a cell belonging to *Y*, which could not come from a map $X^n/Y^n \to Z$.

1.2 Inclusions and retract

An inclusion of subspaces does not generally induce an injection on homology, otherwise life would be simple and boring. For example, the inclusion $S^{n-1} \hookrightarrow D^n$ induces $\mathbb{Z} \to 0$ on $n-1$ homology. However, every functor, including homology, preserves retractions. That is, if we have $Y \stackrel{i}{\hookrightarrow} X \stackrel{r}{\to} Y$ such that $r \circ i = id_Y$, then $H_n(Y) \xrightarrow{i_*} H_n(X) \xrightarrow{r_*} H_n(Y)$ also satisfies $r_* \circ i_* = id_{H_n(Y)}$. In particular, we know that functions that have a retract are injective, so in this case *i*[∗] is indeed injective. Beware – even though in Set the converse is true, every injective function has a retract, this is not true in Grp or Ab. For example, $\mathbb{Z}/2\mathbb{Z} \stackrel{\times 2}{\longrightarrow} \mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z} \hookrightarrow \mathbb{Q}$ do not have retracts. Such a retract exists precisely when the short exact sequence $0 \to A \hookrightarrow B \to B/A \to 0$ splits, giving $B \simeq A \oplus B/A$.

2 Calculating the fundamental group

We calculated the fundamental group of basic spaces:

$$
(1) \ \pi_1(pt) = 0
$$

- (2) $\pi_1(S^1) \simeq \text{H}_1(S^1) \simeq \mathbb{Z}$ (you will prove in exercise)
- (3) $\pi_1(S^n) = 0$ for $n > 0$.

We also know how to calculate the fundamental group of several constructions:

- (1) $\pi_1(X \times Y) \simeq \pi_1(X) \times \pi_1(Y)$ (in exercise).
- (2) (Van-Kampen) If $X = U \cup V$ is an open covering such that $U \cap V$ is path connected and $x_0 \in U \cap V$, the inclusions induce maps on π_1 :

$$
\pi_1(U \cap V) \longrightarrow \pi_1(U)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\pi_1(V) \longrightarrow \pi_1(X)
$$

which is a pushout. In the exercise you were asked to give a formula for pushouts in groups. We will present the formula (you still need to prove it is the pushout!): Given $\phi: G \to H$ and $\psi: G \to K$, the pushout

is given by the *amalgamated free product* $H *_G K = H *_K/N(\{\phi(g)\psi(g)^{-1} | g \in G\}).$

(3) In particular, if *X, Y* are pointed with a contractible neighborhood of the base point, then $\pi_1(X \vee Y) = \pi_1(X) * \pi_1(Y).$

We will use those tools to calculate the fundamental group of more complicated spaces.

Example 2.1. Consider the torus $T = S^1 \times S^1$, then $\pi_1(T) = \mathbb{Z}^2$.

Example 2.2. $\pi_1(S^1 \vee S^1) \simeq \mathbb{Z} * \mathbb{Z} = F_2$ the free group on two generators. Generally, $\pi_1(\bigvee_{i=1}^n S^1) \simeq$ F_n , the free group on *n* generators.

Example 2.3. A *knot* is an embedding $S^1 \hookrightarrow \mathbb{R}^3$. A *link* is an embedding $\bigcup S^1 \hookrightarrow \mathbb{R}^3$. We identify knots and links $f, g: \Box S^1 \hookrightarrow \mathbb{R}^3$ up to an ambient isotopy, which is a homotopy $h_t: \mathbb{R}^3 \to \mathbb{R}^3$ such that $h_0 = \text{id}_{\mathbb{R}^3}$, h_t is a homeomorphism and $h_1 \circ f = g$. Consider the links $L \subseteq \mathbb{R}^3$ of two circles linked, and $U \subseteq \mathbb{R}^3$ two circles unlinked. One way to show that those links are different, is to show that their complements $\mathbb{R}^3 - L$ and $\mathbb{R}^3 - U$ have a different fundamental group.

Let us start with the simpler example of the unknot S^1 . $\mathbb{R}^3 - S^1$ has a deformation retract to $S^1 \vee S^2$

Similarly, $\mathbb{R}^3 - U$ deformation retracts to $S^1 \vee S^1 \vee S^2 \vee S^2$

thus $\pi_1(\mathbb{R}^3 - U) \simeq F_2$. On the other hand, $\mathbb{R}^3 - L$ deformation retracts to $T \vee S^2$,

so $\pi_1(\mathbb{R}^3 - L) \simeq \mathbb{Z}^2$. Note that we could not differentiate the two links using homology, because.

$$
\mathrm{H}_n(\mathbb{R}^3 - U) \simeq \mathrm{H}_n(\mathbb{R}^3 - L) \simeq \begin{cases} \mathbb{Z} & n = 0 \\ \mathbb{Z}^2 & n = 1, 2 \\ 0 & n > 2 \end{cases}
$$

2.1 CW-complexes

We will start by presenting a different approach to calculating $\pi_1(T)$.

Example 2.4. Consider a covering $T = U \cup V$ where *U* is an open disk around some $x_0 \neq x \in T$ which contains x_0 , and $V = T - \{x\}$. Up to a deformation retract, $U \simeq$ pt, $V \simeq S^1 \vee S^1$ and $U \cap V \simeq S^1$. By the previous example, $\pi_1(V) \simeq F_2$ and $\pi_1(U \cap V) \simeq \mathbb{Z}$, and the inclusion $U \cap V \hookrightarrow V$ induces a homomorphism $\mathbb{Z} \to F_2$ which chooses $aba^{-1}b^{-1}$. By Van-Kampen,

$$
\pi_1(T) \simeq \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V) \simeq 0 *_{\mathbb{Z}} F_2 = F_2/N(\langle aba^{-1}b^{-1} \rangle) = F_2^{ab} \simeq \mathbb{Z}^2
$$

In this example we used the CW-structure of *T* whose 1-skeleton is $S_a^1 \vee S_b^1$, and a 2-cell is attached along $ab\bar{a}\bar{b}$, and this 2-cell gave us a null-homotopy of its boundary. This is true in general.

Proposition 2.5. Let *X* be a path-connected pointed space, and let $\varphi: S^1 \to X$ be some pointed *map.* Consider the space $Y = D^2 \cup_{S^1, \varphi} X$, a gluing of a 2-cell to X along φ . Then $\pi_1(Y) \simeq$ $\pi_1(X)/N([\varphi]).$

Proof. Let $U = Y - X$ and $V = Y - \{0\}$. *U* is contractible, *V* deformation retracts to *X*, and $U \cap V$ is path-connected and deformation retracts to S^1 . Note that the basepoint x_0 does not belong to *U* ∩*V*, but we can move the basepoint to some $x_1 \in U \cap V$, and consider a path λ from x_0 to x_1 going through D^2 . The inclusion $U \cap V \hookrightarrow V$ induces a homomorphism $\mathbb{Z} \simeq \pi_1(U \cap V, x_1) \to \pi_1(V, x_1)$ which chooses $[\bar{\lambda}\varphi \lambda] \in \pi_1(V, x_1)$. Thus, by Van-Kampen

$$
\pi_1(Y, x_1) \simeq 0 \ast_{\mathbb{Z}} \pi_1(V, x_1) = \pi_1(V, x_1)/N([\bar{\lambda} \varphi \lambda]).
$$

The choice of λ induces an isomorphism $\pi_1(Y, x_1) \simeq \pi_1(Y, x_0)$ which sends $[\alpha]$ to $[\lambda \alpha \overline{\lambda}]$, so $[\overline{\lambda} \varphi \lambda]$ is sent to $[\varphi]$. Under this isomorphism, wee get

$$
\pi_1(Y, x_0) \simeq \pi_1(V, x_0) / N([\varphi]) \simeq \pi_1(X, x_0) / N([\varphi])
$$

 \Box

Example 2.6. Consider the CW-structure on \mathbb{RP}^2 whose 1-skeleton is S^1 and the attaching map of the 2-cell is $S^1 \xrightarrow{(-)^2} S^1$. This map is of degree 2, so it corresponds to the element $2 \in \pi_1(S^1) \simeq \mathbb{Z}$. We get that

$$
\pi_1(\mathbb{RP}^2) = \mathbb{Z}/N(2) = \mathbb{Z}/2\mathbb{Z}
$$

Now if $\varphi: S^1 \to X$ is an unpointed map, i.e. the basepoint $s_0 \in S^1$ is not sent to $x_0 \in X$, we can choose a path γ from x_0 to $\varphi(s^0)$ and use the isomorphism $\pi_1(X, \varphi(s_0)) \simeq \pi_1(X, x_0)$ which sends $[\varphi] \in \pi_1(X, \varphi(s_0))$ to $[\gamma \varphi \overline{\gamma}] \in \pi_1(X, x_0)$. Under this isomorphism, we have

$$
\pi_1(Y, x_0) \simeq \pi_1(X, x_0) / N([\gamma \varphi \bar{\gamma}])
$$

Generally, if *Y* is formed by gluing (finitely many) 2-cells with attaching maps $\varphi_{\alpha} \colon S^1 \to X$, and *γ*^{*α*} are paths from *x*⁰ to $φ_α(s_0)$, then

$$
\pi_1(Y, x_0) = \pi_1(X, x_0) / N(\langle [\gamma_\alpha \varphi_\alpha \bar{\gamma}_\alpha] \rangle)
$$

What happens when we glue a higher dimensional cell?

Proposition 2.7. *Let X be a path-connected space, and let* φ : $S^{n-1} \to X$ *be some map for* $n > 2$ *.* Consider the space $Y = D^n \cup_{S^{n-1},\varphi} X$ a gluing of an n-cell to X along φ . Then $\pi_1(Y) \simeq \pi_1(X)$.

Proof. As before, choose $U = Y - X$ and $V = Y - 0$. *U* is contractible, *V* deformation retracts to *X* and $U \cap V$ deformation retracts to S^{n-1} . By Van-Kampen,

$$
\pi_1(Y) \simeq \pi_1(D^n) *_{\pi_1(S^{n-1})} \pi_1(X) \simeq 0 *_{0} X = X.
$$

(a similar trick as above can be used to fix the basepoint).

Corollary 2.8. *Given a (finite) CW-complex X, the 2-skeleton inclusion* $X^2 \hookrightarrow X$ *induces an isomorphism on* π_1 *.*

 \Box