Algebraic topology - Recitation 8

December 23, 2024

1 Comments on homework

1.1 CW-complexes

First, a general note on the definition of CW-complexes. We defined a CW-structure as a filtration
@=X"1CXC... C X with cells ®?: D" — X" whose boundaries land in X"~! such that X"
is built from X"~! by gluing the n-cells along their boundary. It is good to reiterate the difference
between the data of a CW-complex and the conditions this data satisfies. The filtration is not a
crucial part of the data, as it can be reconstructed from the cells ®7: D" — X. To reconstruct
the filtration fromn this data, start with X°, which only depends on the number of 0-cells, and
iteratively build X™ from X"~! by gluing the n-cells along their boundary. In fact, we see that we
don’t even need the full n-cells, but only their boundary maps ¢?: S"~! — X.

However, if we are given only the data of the n-cells, we still need to check that it satisfies the
conditions of a CW-complex. To phrase this condition for n-cells, we need to first define X"~ 1,
which is defined inductively if we checked the condition for lower cells. For that reason, it is simpler
to give the filtration as part of the definition.

Suppose Y C X is a subcomlex. Visually, X is built from cells of various dimensions, and some
of them belong to Y. In X/Y, all the cells that came from Y are replaced by a single point.
Thus, X/Y has all the cells in X which are not in Y together with a new 0-cell [Y] € X/Y. For
®7: D™ — X a cell that does not belong to Y, the corresponding cell in X/Y will be g o ®7. Note
that at every filtration level X, the cells coming from Y that appear in X" are those of dimension
<n,s0o X"NY =Y,. The corresponding filtration is then (X/Y)" = X™/Y™, and the boundary
of go ®” indeed lands in X"~ /Y"1,

A common mistake was taking all the cells (including those from Y’) and replacing them with go ®”.
To see how this fails, consider X/X = pt. Even if X had higher cells, X/X cannot have any cell
other than a single O-cell. Generally, the gluing should not identify any point in the interior of a
cell, and if ®7 is a cell from Y, then ¢ o ®7 identifies all of it’s point to a single point.

Let us see why the gluing condition is satisfied. For n = 0, it is enough to count and see that we
have |Io| — |Jo| + 1 O-cells. A map X"/Y"™ — Z is equivalent to a map X™ — Z that is constant on
Y™, Giving a map from X" — Z is equivalent to giving maps from X"~! and from |_|a€1n D™ that
agree on the boundary, and saying that the map is constant on Y is equivalent to factoring through



Xn=1/y"=1 and only including those n-cells which are not in Y. Thus, we get the pushout square
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It is important that we removed the n-cells coming from Y — else we could have a non-constant
map D™ — Z from a cell belonging to Y, which could not come from a map X"/Y"™ — Z.

1.2 Inclusions and retract

An inclusion of subspaces does not generally induce an injection on homology, otherwise life would
be simple and boring. For example, the inclusion S"~! — D™ induces Z — 0 on n — 1 homology.

However, every functor, including homology, preserves retractions. That is, if we have Y’ 4SxLy
such that roi = idy, then H,, (Y) <= H,,(X) == H, () also satisfies r, 0i, = idg,, (vy. In particular,
we know that functions that have a retract are injective, so in this case i, is indeed injective. Beware
— even though in Set the converse is true, every injective function has a retract, this is not true in

Grp or Ab. For example, Z/27Z X2 Z/AZ or Z — Q do not have retracts. Such a retract exists
precisely when the short exact sequence 0 — A — B — B/A — 0 splits, giving B ~ A ® B/A.

2 Calculating the fundamental group

We calculated the fundamental group of basic spaces:
(1) mi(pt) =0
(2) 71 (SY) ~ H;(S') ~ Z (you will prove in exercise)
(3) m(S™) =0 for n > 0.
We also know how to calculate the fundamental group of several constructions:
(1) m(X xY) ~m(X) x 7 (Y) (in exercise).

(2) (Van-Kampen) If X = U UV is an open covering such that U NV is path connected and
9 € U NV, the inclusions induce maps on 7;:

7T1(UOV) 7T1(U)

| |

771(V) e 7T1(X)

which is a pushout. In the exercise you were asked to give a formula for pushouts in groups.
We will present the formula (you still need to prove it is the pushout!): Given ¢: G — H and



¥: G — K, the pushout

GLH

|

K —— Hxg K
is given by the amalgamated free product H x¢ K = H x K/N({¢(g)¥(9)~! | g € G}).

(3) In particular, if X,Y are pointed with a contractible neighborhood of the base point, then
771(X V Y) = 7T1(X) * 7T1(Y).

We will use those tools to calculate the fundamental group of more complicated spaces.
Example 2.1. Consider the torus 7' = S x S, then 7 (T) = Z2.

Example 2.2. 71(S'VS!) ~ Z+Z = F, the free group on two generators. Generally, m(\/[_, S') ~
F,,, the free group on n generators.

Example 2.3. A knot is an embedding S' < R3. A [ink is an embedding | | S* — R®. We identify
knots and links f,g: | | S' — R3 up to an ambient isotopy, which is a homotopy h;: R?* — R3 such
that hg = idgs, h; is a homeomorphism and h; o f = ¢g. Consider the links L C R? of two circles
linked, and U C R? two circles unlinked. One way to show that those links are different, is to show
that their complements R3 — L and R® — U have a different fundamental group.

Let us start with the simpler example of the unknot S'. R3 — S! has a deformation retract to
Stv s?

Similarly, R? — U deformation retracts to S* v S' v 82 v §2

N

thus 71 (R — U) ~ F,. On the other hand, R® — L deformation retracts to T'V S?,



so m1(R® — L) ~ Z2. Note that we could not differentiate the two links using homology, because.

Z n=0
H,(R®*-U)~H,(R*-L)~<{7?> n=1,2
0 n>2

2.1 CW-complexes

We will start by presenting a different approach to calculating m (7).

Example 2.4. Consider a covering T'= U UV where U is an open disk around some zy # x € T
which contains zg, and V = T — {z}. Up to a deformation retract, U ~ pt, V ~ S v S and
UNV ~ St . By the previous example, 71(V) =~ Fy and 71 (U N V) ~ Z, and the inclusion
UNV — V induces a homomorphism Z — F, which chooses aba~'b~!. By Van-Kampen,

T(T) = 71(U) 5, vy T (V) = 057 Fr = Fy /N((aba™'b71)) = FiP ~ 72

In this example we used the CW-structure of T whose 1-skeleton is S} v .S}, and a 2-cell is attached
along abab, and this 2-cell gave us a null-homotopy of its boundary. This is true in general.

Proposition 2.5. Let X be a path-connected pointed space, and let p: S' — X be some pointed
map. Consider the space Y = D? Ugt » X, a gluing of a 2-cell to X along ¢. Then m(Y) ~

™1 (X)/N([])-

Proof. Let U =Y —X and V =Y —{0}. U is contractible, V deformation retracts to X, and UNV
is path-connected and deformation retracts to S*. Note that the basepoint zy does not belong to
UNV, but we can move the basepoint to some 1 € UNV, and consider a path A from z( to x; going
through D2. The inclusion U NV < V induces a homomorphism Z ~ 7 (U NV, z1) — 71(V, 1)
which chooses [ApA] € 71 (V,21). Thus, by Van-Kampen

m (Y, 21) > 0%z m (V,21) = w1 (V, 21) /N ([ApA]).

The choice of A induces an isomorphism 71 (Y, z1) ~ 7 (Y, o) which sends [a] to [Aa], so [Ap]] is
sent to [¢]. Under this isomorphism, wee get

m (Y, w0) = m(V,20) /N([¢]) = m1(X, 20) /N ([¢])



Example 2.6. Consider the CW-structure on RP? whose 1-skeleton is S* and the attaching map of

N2
the 2-cell is St LN S1. This map is of degree 2, so it corresponds to the element 2 € 7 (S?) ~ Z.
We get that

71 (RP?) = Z/N(2) = Z./27Z

Now if ¢: S' — X is an unpointed map, i.e. the basepoint sy € S is not sent to 29 € X, we can
choose a path « from zg to (s°) and use the isomorphism (X, ¢(s0)) =~ 71 (X, 2¢) which sends
[¢] € m1 (X, ©(s0)) to [y¥] € 1 (X, xp). Under this isomorphism, we have

m1 (Y, w0) = m (X, 20) /N ([v#7])

Generally, if Y is formed by gluing (finitely many) 2-cells with attaching maps ¢, : S' — X, and
7o are paths from zg to ¢, (sp), then

™1 (Y, o) = (X, 20) /N (([VaaTal))

What happens when we glue a higher dimensional cell?

Proposition 2.7. Let X be a path-connected space, and let ¢: S*~1 — X be some map for n > 2.
Consider the space Y = D" Ugn-1 , X a gluing of an n-cell to X along ¢. Then m(Y) ~ m(X).

Proof. As before, choose U =Y — X and V =Y — 0. U is contractible, V' deformation retracts to
X and U NV deformation retracts to S"~!. By Van-Kampen,

T (Y) = m (D) %7y (sn-1) T1(X) = 0% X = X.
(a similar trick as above can be used to fix the basepoint). O

Corollary 2.8. Given a (finite) CW-complex X, the 2-skeleton inclusion X? — X induces an
isomorphism on 1.
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