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1 Equivalence of categories

Any meaningful mathematical notion is isomorphism invariant. In particular, we usually don’t want
to assert that two constructions are equal, only isomorphic. In the category of categories, we have
the following notion of isomorphism:

Definition 1.1. An functor F : C ! D is an isomorphism if there exist a functor G : D ! C such
that

G ◦ F = idC F ◦ G = idD

The assertion G ◦ F = idC means that for every X ∈ C we have an equality G(F (X)) = X.
This breaks the core tenet – we assert that two objects in C are equal, instead of demanding an
isomorphism. Recall that functors Fun(C , D) form a category, where the isomorphisms are natural
isomorphisms. The above definition, of F being an isomorphism of categories, is not invariant under
natural isomorphisms. Instead, the better way to identify between categories is with equivalence of
categories:

Definition 1.2. An functor F : C ! D is an equivalence of categories if there exist a functor
G : D ! C and natural isomorphisms

G ◦ F ≃ idC F ◦ G ≃ idD

If F is an equivalence of categories, then the inverse G is unique (up to natural isomorphism).

Example 1.3. Consider C = {1} the point, and D the category with two points and an isomor-
phism between them f : 1 ∼−! 2.
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Those categories are not isomorphic, as they have a different number of objects. Define F : C ! D
by 1 7! 1 and G : C ! D by 1, 2 7! 1. We have GF (1) = 1, so GF = idC . On the other hand,
FG(1) = FG(2) = 1, so FG ̸= idD . However, there is a natural isomorphism α : FG

∼−! idD , given
by α1 = id1 : 1 ∼−! 1 and α2 = f : 1 ∼−! 2. Thus, C and D are equivalent categories.
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1.1 Fundamental groupoids

The definition of equivalence of categories might seem similar to homotopy equivalence, where
instead of homotopies of maps we have natural isomorphisms of functors. There is indeed a con-
nection between the two concepts. Recall that for a space X, the fundamental groupoid π≤1(X) is
the category whose objects are points in X and whose morphisms are paths up to homotopy.

Proposition 1.4. Let f, g : X ! Y be homotopic maps, then f∗, g : π≤1(X)! π≤1(Y ) are naturally
isomorphic functors.

Proof. Let h : X × I ! Y be a homotopy between f and g. For every x ∈ X, h(x, −) : I ! Y
defines a path in Y between f(x) and g(x). Such a path corresponds to an isomorphism in the
fundamental groupoid αx : f∗(x) ∼−! g∗(x) ∈ π≤1(Y ). We want to show that α assembles into
a natural isomorphism, meaning that for every path p : x ! y ∈ π≤1(X) the following square
commutes:

f∗(x) g∗(x)

f∗(y) g∗(y)

αx

f∗(p) g∗(p)
αy

Consider H : I2 ! Y given by H(s, t) = h(p(s), t). The edges of I2 are mapped to

H(0, −) = h(x, −) = αx H(1, −) = h(y, −) = αy

H(−, 0) = h(p(−), 0) = f∗(p) H(−, 1) = h(p(−), 1) = g∗(p)

So, moving through the interior of I2, we get a homotopy between the composition of paths above.

Corollary 1.5. If f : X ! Y is a homotopy equivalence, then f∗ : π≤1(X)! π≤1(Y ) is an equiv-
alence of categories.

Proof. There exists g : Y ! X and homotopies gf ∼ idX and fg ∼ idY . By the above proposition,
we get natural isomorphisms g∗f∗ ≃ idπ≤1(X) and f∗g∗ ≃ idπ≤1(Y ) .

1.2 Grothendick construction for sets

For a set B, define Set/B the category of sets over B, whose:

• objects are sets A with a function A
f−! B

• morphisms are functions g : B ! B′ such that the triangle commutes

A A′

B

g

f f ′
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On the other hand, we can also consider B as a discrete category, in which case Fun(B, Set) is the
category of B-indexed families of sets.

Definition 1.6. Define the following functors:

(1) The fiber fib: Set/B ! Fun(B, Set): for A
f−! B ∈ Set/B , define fib(f) ∈ Fun(B, Set) by

taking the fibers fib(f)b = f−1(b). Given A, A′ ∈ Set/B and g : A! A′ such that f = f ′ ◦ g,
note that

a ∈ fib(f)b ⇐⇒ f(a) = b ⇐⇒ f ′(g(a)) = b ⇐⇒ g(a) ∈ fib(f ′)b

Thus, g induces a map fib(f)! fib(f ′) by acting on each fiber separately.

(2) The Grothendick construction
∫

: Fun(B, Set) ! Set/B : for a family of sets (Ab)b∈B , define∫
Ab ∈ Set/B as the set

⊔
b∈B Ab with the map π :

⊔
b∈B Ab ! B sending the component Ab

to b. For a family of functions gb : Ab ! A′
b, there is an induced map g : ⊔ Ab ! ⊔A′

b acting
on each fiber separately. For concreteness, let us choose a model for the disjoint union, say⊔

b∈B Ab =
⋃

b∈B Ab × {b}.

Proposition 1.7. There is an equivalence of categories Set/B ≃ Fun(B, Set) given by fib and
∫

.

Proof. Let (Ab)b∈B ∈ Fun(B, Set). Note that fib(π)b = π−1(b) = Ab × {b} ≃ Ab, and this isomor-
phism is natural,

Ab × {b} Ab

A′
b × {b} A′

b

∼

∼

so we get a natural isomorphism fib ◦
∫ ∼−! idSet/B

.

On the other hand, suppose we have A
f−! B ∈ Set/B , and denote Ab = fib(f)b = f−1(b). The

inclusions Ab ↪! A induce a map
⊔

Ab ! A. This map is injective, because all fibers are disjoint, and
surjective, because every element belongs to some fiber, so it is an isomorphism of sets. Moreover,
the triangle commutes ⊔

Ab A

B

∼

π f

Naturality then boils down to the statement that applying a function on A is the same as applying
the function on each fiber seperately.

Example 1.8. (1) Set/pt ≃ Fun(pt, Set) ≃ Set

(2) Set/{0,1} ≃ Fun({0, 1}, Set): a set with a map A ! {0, 1} has the same data as considering
the two fibers A0, A1. Note that, if we fix A, choosing a map A ! {0, 1} is equivalent to
choosing a subset A0 ⊆ A (the subset A1 is then the complement). For that reason. {0, 1} is
called the subobject classifier.
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2 Colimits

Every meaningful categorical construction is invariant under equivalence of categories. In particular,
this is true for colimits, as you will see in the exercise. First, let us give the (long overdue) definition
of a general colimit, starting with the simplest colimit, the initial object.

Definition 2.1. An object X ∈ C is called initial if for every Y ∈ C there is a unique map X ! Y .

Lemma 2.2. The initial object, if it exists, is unique up to a unique isomorphism.

Proof. Suppose X, X ′ ∈ C are initial, there are unique map X ! X ′ and X ′ ! X, and the
compositions

X ! X ′ ! X

X ′ ! X ! X ′

must be the unique maps X ! X and X ′ ! X ′ respectively, so they must be equal idX and idX′

respectively.

Example 2.3. The empty set ∅ ∈ Set is the initial set. Similarly, ∅ ∈ Top and ∅ ∈ Cat are
initial. The trivial group 0 is initial in Grp and Ab.

Let I be some category, thought of as an indexing category, and let D : I ! C be a functor, thought
of as an I-shaped diagram in C . A cocone in C under D is an object X ∈ C with maps from D(i)
making the extended diagram commute. Formally, we define the following category:

Definition 2.4. The category of cocones in C under D, denoted CD/, has:

• objects X ∈ C together with maps fi : D(i)! X such that for every σ : i! j, fi = fj ◦D(σ).

• morhpisms (X, fi)! (X ′, f ′
i) are maps g : X ! X ′ such that g ◦ fi = f ′

i .

The colimit of D is the initial object of CD/, if it exists, and is denoted colim D.

Example 2.5. Consider I = ∅, in which case there is only the empty diagram D : ∅ ! C . The
category CD/ is then just an object X ∈ C with no extra maps, so CD/ ≃ C and the colimit of D
is the initial object of C .

Example 2.6. We have seen examples of colimits for the following shapes of diagrams:

(1) Coproduct: I = • •.

(2) Pushout: I = • •! •.

(3) Sequential colimit: I = •! •! . . .

Remark 2.7. There is a dual construction of a limit: the limit of D : I ! C is the colimit of
Dop : Iop ! C op. More explicitly, an object X ∈ C is terminal if it has a unique map from every
Y ∈ C , and a cone (X, fi) ∈ C/D is an object X ∈ C with maps fi : X ! D(i) making the diagram
commute. The limit is then a terminal cone.
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