
Algebraic topology - Recitation 10

January 6, 2025

1 On Homework

Remark 1.1. From now on, the normal closure will be denoted ⟨⟨R⟩⟩ while the normalizer will be
denoted N(H).

1.1 The k × k lemma

0 0 0

0 A0,k−1 A1,k−1 · · · Ak−1,k−1 0

...
...

...

0 A0,1 A1,1 · · · Ak−1,1 0

0 A0,0 A1,0 · · · Ak−1,0 0

0 0 0

Suppose all rows and columns except the first are exact. First of all, it follows that the first row
and column also satisfy the chain rule. Without loss of generality we will prove for the row, Let
a ∈ An+2,0, we want to prove that d2

<(a) = 0. By surjectivity, there is some b ∈ An+2,1 such that
a = d∨(b), and

d2
<(a) = d2

<d∨(b) = d∨d2
<(b) = 0

We can change every even vertical map to be negative for the bicomplex, this doesn’t affect ho-
mology. The E1 pages are the horizontal/vertical homologies, which are zero except for the first
line Hn(A•,0), Hn(A0,•). The spectral sequence collapses at this point, so this is also the E∞ page.
Beware! Apriori, there is no reason for E<∞ and E∨∞ to be the same; they are both associated
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graded on different filtrations of Hn(Tot(A)). However, when the associated graded has a single
non-zero term

. . . , 0, 0, G, 0, 0 . . .

then the filtration is constant except at this spot, where is must change from 0 to G

· · · ⊆ 0 ⊆ 0 ⊆ G ⊆ G ⊆ G ⊆ . . .

and in this case G is the total group. So for those specific E∞ pages, we get

Hn(A•,0) = Hn(Tot(A)) = Hn(A0,•).

1.2 Free product of presentations

Recall the ⟨S | R⟩ = ⟨S⟩/⟨⟨R⟩⟩. We want to prove that ⟨S1 | R1⟩ ∗ ⟨S2 | R2⟩ = ⟨S1 ⊔ S2 | R1 ⊔ R2⟩.
Dealing with the explicit structure of free groups and normal closures is hard. The easiest proof is
to show that they both have the same universal property. First, we want to describe the universal
property of quotient by the normal closure.

Lemma 1.2. Let R ⊆ G be a subgroup, then homomorphisms f̄ : G/⟨⟨R⟩⟩ ! H are the same as
homomorphisms f : G ! H such that f(R) = 0.

Proof. The universal propertey of the quotient tells us that that homomorphisms f̄ : G/⟨⟨R⟩⟩ ! H
are the same as homomorphisms f : G ! H such that ⟨⟨R⟩⟩ ⊆ ker(f). But ker(f) is normal, so this
is equivalent to R ⊆ ker(f).

We will also use the fact that ⟨S1 ⊔S2⟩ ≃ ⟨S1⟩ ∗ ⟨S2⟩. This follows either by definition ⟨S⟩ = ∗s∈SZ,
or from the universal property.
Now notice that homomorphisms f̄ : ⟨S1 ⊔ S2 | R1 ⊔ R2⟩ ! H are the same as homomorphisms
f : ⟨S1 ⊔S2⟩ ! H such that f(R1 ⊔R2) = 0 which are the same as f1 : ⟨S1⟩ ! H and f2 : ⟨S1⟩ ! H
such that f1(R1) = 0 and f2(R2) = 0 which are the same as f̄1 : ⟨S1 | R1⟩ ! H and f̄2 : ⟨S2 | R2⟩ !
H.

2 Galois correspondence of covering spaces

Let X be a path connected locally simply connected space, and denote G = π1(X). Today you
proved that there is an equivalence of categories:

{covers of X} ≃ {G-sets}

which on pointed connected covers reduces to an equivalence

{Pointed connected covers of X} ≃ {Pointed transitive G-sets} ≃ {subgroups of G}

This equivalence is given by
(p : Y ! X) 7! (p∗(π1(Y )) ⊆ G)

(H ⊆ G) 7! (X̃/H ! X)
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where X̃ ! X is the universal cover. This correspondence has a striking resemblance to Galois
correspondence of fields. This is not by accident: there is a way in algebraic geometry to realize
field extensions as a form of covering spaces (étale morphism of schemes). We will prove statements
about this correspondence that are analogs of statements in Galois theory of fields.

2.1 Deck transformations

Let Y ! X be a covering space. A deck transformation is an automorphism Y
∼−! Y of covering

spaces. The group of deck transformation is denoted AutX(Y ). For example, for the universal
covering R ! S1, the deck transformation are integer shifts of R.
If Y is path connected, the unique lifting property tells us that a deck transformation is determined
by its value on a single point. Generally, a deck transformation is determined by its value on a
point from every connected component.

Definition 2.1. A covering p : Y ! X is called normal if for each x ∈ X and every y1, y2 ∈ p−1(x0)
there exists a deck transformation τ : Y ! Y such that τ(y1) = y2.

Let F denote the fiber of Y at some point, with its corresponding G-action. The equivalence of
categories between covering space and G-sets gives us a bijection AutX(Y ) ≃ AutG(F ), where
AutG(F ) is the automorphism group of F as a G-set. Under this bijection, a covering is normal if
and only if the action of AutG(F ) on F is transitive.

Example 2.2. The coverings R ! S1, as well as (−)n : S1 ! S1, are normal. However, a covering
like R ⊔ S1 ! S1 is not normal, as there is no deck transformation between the components. For
an example of a non-normal connected cover, consider the cover of S1 ∨ S1 given by

The name “normal” is motivated by the following result:

Proposition 2.3. Let p : (Y, y0) ! (X, x0) be a (pointed) path-connected covering space, and let
H = p∗(π1(Y )) ⊆ π1(X) = G. Then:

(1) The covering space is normal if and only if H is a normal subgroup of G.

(2) AutX(Y ) ≃ N(H)/H, where N(H) is the normalizer of H in G.

In particular, AutX(Y ) ≃ G/H when Y is normal, and for the universal cover we get AutX(X̃) =
π1(X).

Using the equivalence of categories, we can reduce this statement to a purely algebraic one:

Lemma 2.4. Let H ⊆ G be a subgroup, and consider the G-set G/H. Then there is an isomorphism
AutG(G/H) ≃ N(H)/H.
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Proof. Suppose n ∈ N(H), meaning Hn = nH. There is a right action of N(H) on G/H given by
(kH).n = kHn = knH. This right action respects the left action of G, g.(kH).n = gknH, so (−).n
is an automorphism of G-sets. Thus, this action defines a homomorphism N(H) ! AutG(G/H).
This homomorphism is surjective: Given τ ∈ AutG(H), let τ(eH) = nH. Because τ is an automor-
phism of G-sets, it follows that for every h ∈ H

nH = τ(eH) = τ(hH) = hτ(eH) = hnH

meaning in particular that hn ∈ nH, so Hn = nH. Moreover, for every kH ∈ G/H we have
τ(kH) = kτ(eH) = knH = (kH)n, so τ is equal to the right action of n.
The kernel is H: It is immediate that for h ∈ H the right action is trivial, (kH)h = kHh = kH.
On the other hand, if n ∈ N(H) has a trivial right action, then Hn = H, so in particular n = en ∈
H.

Lemma 2.5. A subgroup H ⊆ G is normal if and only if the action of AutG(G/H) on G/H is
transitive.

Proof. Suppose H is normal. For every g ∈ G = N(H), right multiplication by g defines an
automorphism of G-sets, which satisfies (eH)g = gH. Now assume the action is transitive, so for
every g ∈ G there is some n ∈ N(H) such that nH = (eH)n = gH. It follows that g = nh for some
h ∈ H, but H ⊆ N(H) so g ∈ N(H).

Proposition. Follows from the above two lemmas under the identification AutX(Y ) = AutG(G/H),
recalling that a covering is normal if the action of AutG(G/H) on G/H is transitive.

2.2 Group actions

The group of deck transformations AutX(Y ) acting on Y is a special case of a group acting on a
space. Given a group G and a space Y , an action of G on Y is a homomorphism G ! Aut(Y )
from G to the group of homeomorphism Y ! Y . We will consider specifically free actions, meaning
that for every g ̸= e and every y ∈ Y , gy ̸= y. In particular, a free action is faithful, so the
homomorphism G ! Aut(Y ) is injective. In fact, we would like a stronger, topological version of
freeness:

(∗) Each y ∈ Y has an open neighborhood U such that all images g(U) are disjoint for different
g. That is, if g1 ̸= g2 then g1(U) ∩ g2(U) = ∅, or equivalently if g ̸= e then g(U) ∩ U = ∅.

The action of deck transformations on a connected covering space p : Y ! X, given by the inclusion
AutX(Y ) ↪! Aut(Y ) of covering-preserving automorphism into all automorphisms, satisfies (∗):
Given y ∈ Y , suppose x = p(y) ∈ X. By definition of a covering space, there is a neighborhood
x ∈ V such that p−1(V ) =

⊔
Uα, where p|Uα : Uα ! V is a homeomorphism. Suppose y ∈ U0,

every deck transformation τ sends U0 to some Uα, and if Uα = U0 then it must send y to itself,
implying τ = id.
For an example of a free action that does not satisfy (⋆), consider the action of Z on S1 given by
rotations by 2πα where α is irrational.
Given an action of a G on Y , we can form a space Y/G, the quotient space under the equivalence
relation of the orbits. This space is called the orbit space.
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Proposition 2.6. If an action of G on Y satisfies (∗), then:

(1) The quotient map p : Y ! Y/G is a normal covering space.

(2) If Y is path-connected, then G is the group of deck transformation of p : Y ! Y/G.

(3) If Y is path-connected and locally simply connected, then G is isomorphic to π1(Y/G)/p∗(π1(Y )).

Proof. Let y ∈ Y and U as in (∗). The quotient map p identifies all disjoint neighborhood g(U)
homemorphicaly to p(U), so we have a covering space. Each elemet of G acts as a deck trans-
formation, so we have a homomorphism G ! AutY/G(Y ). Choosing some y0 ∈ Y , we get a
homomorphism in the other direction where a deck transformation τ is sent to the unique g such
that τ(y0) = gy0 The composition G ! AutY/G(Y ) ! G is clearly the identity, and if Y is path
connected then AutY/G(Y ) ! G ! AutY/G(Y ) is also the identity, because a deck transforma-
tion is determined by its action on a single point. The covering is normal, because for every
g1y, g2y ∈ p−1([y]), the deck transformation corresponding to g1g−1

2 sends one to the other. For the
final statement, notice that if Y is locally path connected then Y/G is also locally path connected,
so it follows from the above proposition.

Suppose p : Y ! X is a path connected, locally simply-connected normal cover, with π1(X) = G
and p∗π1(Y ) = N . In particular AutX(Y ) ≃ G/N , and subgroups H ⊆ AutX(Y ) correspond to
intermediate N ⊆ HN ⊆ G. Such H corresponds to a factorization of p into two cover Y ! Y/H !
X, where π1(Y/H) = HN .
Note that if Y is simply connected and G acts on Y satisfying (∗), then G ≃ π1(Y/G). This
method gives us an alternative way to calculate π1(S1) ≃ π1(R/Z) ≃ Z, without using homology
and Eckman-Hilton. It can be used to calculate the fundamental groups of more spaces.

Example 2.7. Consider R2 with the following grid:

Consider the action of Z2 on R2 preserving the grid, given by horizontal and vertical shifts. This
action satisfies (∗), as every non identity element moves each point by at least 1 unit length.
The orbit space of this action is R2/Z2, which is homeomorphic to the torus, so it follows that
π1(T) ≃ Z2.
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