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1 On Homework

Let (G, e) be a topological group, we want to prove that π1(G, e) is Abelian. The idea was to
define an additional group structure on π1(G, e) by the multiplication of G, and use the Eckman-
Hilton argument. Verifying that such a multiplication is homotopy invariant, and that it commutes
with composition of paths, requires some routine homotopical arguments, which are very similar to
things we’ve done before. In this case it is not too bad to run the arguments explicitly, but I want
to present an alternative, which uses only previously proven claims and abstract nonsense.
Using the fact that π1 commutes with products and that the multiplication of G is continuous, we
get a homomorphism

⊠ : π1(G) × π1(G) ≃ π1(G × G) m∗−−! π1(G).

Automatically this map is homotopy invariant, and the fact that it is a homomorphism implies that

⊠(a ∗ b, c ∗ d) = ⊠((a, c) ∗ (b, d)) = ⊠(a, c) ∗ ⊠(b, d).

Unitality follows by applying π1 to the composition G×pt id×e−−−! G×G
m−! G, which is the identity.

Thus, the premise of the Eckman-Hilton argument holds.
Another great proof I saw, which I didn’t think of myself, was that a path α : I ! G defines a
homotopy ht(g) = αtg from idG to itself. By HW7, this implies that [α] is in the center of π1(G).
With all that said, it is also beneficial to see explicitly why the argument works. Given a path
α : I ! G and s ∈ I, define αs as the reparametrization of α to [ s

2 , s+1
2 ] We then have α ∗ β = α0β1

and β ∗ α = α1β0. Commuting those two elements is the homotopy αsβ1−s which slides the two
paths part each other. Such sliding motion is at the heart of the Eckman-Hilton argument, and
can also be seen in the commutativity of π2.

2 Fiber bundles

Fiber bundles are a generalization of covering spaces, where the fibers are not necessarily discrete.

Definition 2.1. The trivial bundle over B with fiber F is the projection B × F ! B. A map
p : E ! B is a fiber bundle with fiber F if it is locally trivial, meaning that for all x ∈ B there
is some neighborhood x ∈ U such that p−1(U) ≃ U × F , with p−1(U) ! U corresponding to the
projection U × F ! U .
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Example 2.2. S1 × I ! S1 is a trivial bundle. On the other hand, consider the Möbius strip
M , with the projection M ! S1. Locally, M and S1 × I look the same, so M is a fiber bundle.
However, M is not globally trivial.

In the context of homotopy theory, the crucial property of fiber bundles is that they have a homotopy
lifting property: For every homotopy h : X × I ! B, and a lift of one of the edges h̃0 : X ! E
satisfying p◦ h̃0 = h0, there exists a (non-uniqe) lift h̃ : X ×I ! E such that p◦ h̃ = h and h̃|0 = h̃0.
Any map p : E ! B satisfying this homotopy lifting property is called a fibration. Such a fibration,
with fiber F , is written akin to short exact sequences as

F ↪! E ! B.

Theorem 2.3. Given a fibration F ↪! E ! B, there is a long exact sequence in homotopy groups

· · · ! πn(F ) ! πn(E) ! πn(B) ! πn−1(F ) ! · · ·

Let U(n) ⊆ Mn×n(C) be the group of unitary matrices, inheriting a topology from Cn2 . Consider
that map p : U(n) ! S2n−1 which sends A ∈ U(n), the last column An ∈ S2n−1, which is a unit
vector. Given v ∈ S2n−1, let v⊥ ≃ Cn−1 be its orthogonal complement. The fiber p−1(v) consists
of unitary operators A that send en 7! v; in particular, they restrict to (and are determined by)
unitary operators A|Cn−1 : Cn−1 ! v⊥. If we choose an orthonormal basis B for v⊥ to represent
A|Cn−1 , and use the standard basis for Cn−1, then we get that [A|Cn−1 ]B ∈ U(n − 1). This gives us
a homeomorphism p−1(v) ≃ U(n − 1).

Proposition 2.4. p : U(n) ! S2n−1 is a fiber bundle, with fiber U(n − 1).

Proof. Let v ∈ S2n−1. Given a small enough neighborhood v ∈ U , we will choose for every
u ∈ U an orthonormal basis Bu = (b1(u), . . . , bn(u)) of u⊥. This choice will be made continuously,
meaning that bi : U ! S2n−1 are continuous. Using this basis, we will get a local trivialization
p−1(U) ≃ S2n−1 × U(n − 1) by A 7! (p(A), [A|Cn−1 ]Bp(A)).
Start with an orthonormal basis Bv = (b1, . . . , bn), for any u ∈ S2n−1 project Bv to u⊥. The
projected Bv is not always linearly independent – e.g. if u = bi, then the projection of bi is 0.
However, it will be a basis for u close enough to v. Formally, consider the function d : S2n−1 ! C
which sends u ∈ S2n−1 to the determinant

d(u) = det
(

Pu⊥(b1) . . . Pu⊥(bn−1) v
# # #

)
All the components of the above function are continuous, namely the determinant is a polynomial
and the projection has a formula using the inner product. Moreover, (b1, . . . , bn−1, v) forms an
orthonormal basis, so d(v) ̸= 0. Thus, we can choose the open neighborhood v ∈ U = d−1(C \ {0}),
and for every u ∈ U the projections (Pu⊥(b1), . . . , Pu⊥(bn−1)) will be linearly independent. Applying
the Graham-Schmidt algorithm on the projections, which is also continuous, we get an orthonormal
basis Bu of u⊥.

Corollary 2.5. πk(U(n − 1)) ! πk(Un) is an isomorphism for k < 2n − 1, and a surjection for
k = 2n − 1.
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Proof. Follows from the fibration U(n − 1) ↪! U(n) ! S2n−1, and the fact that πk(S2n−1) = 0 for
k < 2n − 1.

Note that, for v ∈ S2n−1, v⊥ is the tangent space of S2n−1 at v. A global, continuous choice of
a basis for the tangent spaces is called a framing. If we had a framing of S2n−1, we would get a
trivialization of the fiber bundle U(n) ≃ S2n−1 × U(n − 1). This happens for n = 1, where indeed
U(1) ≃ S1 × U(0) = S1 and also less trivially for n = 2 where U(2) ≃ SU(2) × U(1) ≃ S3 × U(1).
It is a very non-trivial fact, due to Hirzebuch-Kervaiere and Bott-Milnor, that such framings exist
only for S1, S3 and S7.

3 More Hopf maps
The Hopf map is a fiber-bundle η : S3 ! S2 with fiber S1, corresponding to a non-trivial element
in π3(S2). To define the Hopf map, consider S3, as the unit sphere in C2, and consider the quotient
map S3 ! CP1 = S3/x ∼ λx. There is a homeomorphism CP1 ≃ S2, and the fiber of the quotient
at [x] ∈ CP1 is {λx | λ ∈ S1} ≃ S1.
For this construction, we used only a small part of the structure of C. In fact, we only used the
fact that it is a normed division algebra.

Definition 3.1. A normed division algebra is a finite dimensional, normed real vector space V
with a map · : V × V ! V that is:

(1) Unital: there is an element 1 ∈ V such that 1 · a = a · 1 = a.

(2) Normed: ||a · b|| = ||a|| · ||b||

(3) Division: every a ̸= 0 has a left inverse a−1a = 1 (it follows that there is also a right inverse,
but they need not coincide).

A theorem by Hurwitz (not to be confused with Hurewicz) states that there are only 4 normed
division algebras, of dimensions 1,2,4,8:

(1) R, which is an ordered field.

(2) C, which is not ordered but still a field.

(3) H, the quaternions, which are not commutative but still associative.

(4) O, the octonions, which are not even associative.

Let V be a normed division algebra of dimension n. Consider S(V ) the unit sphere in V . As a
normed vector space, V is equivalent to Rn with the Euclidean norm, and in particular S(V ) ≃
Sn−1. Similarly, V 2 has a norm given by ||(x, y)|| =

√
||x||2 + ||y||2, and the unit sphere there

is S(V 2) ≃ S2n−1. Define P (V 2) as the space of lines in V 2, or formally as one of the following
quotients:

P (V 2) = V 2 − 0/(x, y) ∼ (λx, λy) ∀λ ∈ V − 0.

P (V 2) = S(V 2)/(x, y) ∼ (λx, λy) ∀λ ∈ S(V ).
The fact that the two definitions are well-defined, and are equivalent, follows from the multiplication
of V being normed.
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Lemma 3.2. There is a homeomorphism P (V 2) ≃ Sn.

Proof. Let V+ = V ∪ {∞} ≃ Sn be the one point compactification of V . Consider the map
P (V 2) ! V+ which sends

[x, y] 7!
{

x−1y x ̸= 0
∞ x = 0

This map is well-defined, because given [x, y] = [λx, λy] we have (λx)−1λy = x−1λ−1λy = x−1y.
In the other direction, consider the map V+ ! P (V 2) which sends

z 7!

{
[1, z] z ̸= ∞
[0, 1] z = ∞

Those maps are inverses, as [x, y] = [1, x−1y] for x ̸= 0 and [0, y] = [0, 1]. The proof that those
maps are continuous is exactly as in the cases R or C.

Definition 3.3. Given a normed division algebra V of dimension n, there is a corresponding
generalized Hopf map ηV : S2n−1 ! Sn, which is the quotient map S(V 2) ! P (V 2).

ηV is a fiber bundle, with the fiber at [x, y] given by {(λx, λy)|λ ∈ S(V )} ≃ Sn−1. The proof that
η = ηC defined a non-trivial element in π3(S2) used the fibration S1 ↪! S3 ! S2, and relied on the
vanishing of πk(S1) = 0 for k > 1. While this proof does not work for n > 2, it is still true that
[ηV ] ∈ π2n−1(Sn−1) is non-trivial. Given that there are only four options for V , we get 4 non-trivial
elements in the homotopy groups of the spheres, and also 4 fibrations of sphere:

(1) S0 ↪! S1 ηR−! S1

(2) S1 ↪! S3 ηC−! S2

(3) S3 ↪! S7 ηH−! S4

(4) S7 ↪! S15 ηO−! S8

A theorem by Adams says that those are the only fibrations where both the base, the total space
and the fiber are spheres.
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