
Algebraic topology - Recitation 12

January 20, 2025

1 Exact functors

Let X be a space and A an Abelian group. In class, you defined homology with coefficients in A.
To do so, you constructed a chain complex C•(X; A) by tensoring C•(X) with A:

· · · C2(X) ⊗ A
∂2⊗A−−−−! C1(X) ⊗ A

∂1⊗A−−−−! C0(X) ⊗ A · · ·

and defined Hn(X; A) = Hn(C•(X; A)). It would have been very simple if we had an isomorphism
Hn(X; A) ≃ Hn(X) ⊗ A. To see why this is not the case, let us try to prove that it is until we get
stuck. By definition,

Hn(X; A) = ker(∂n ⊗ A)/ Im(∂n+1 ⊗ A) = coker(Cn+1(X) ⊗ A
∂n+1⊗A−−−−−! ker(∂n ⊗ A))

Hn(X) ⊗ A = coker(Cn+1(X) ∂n+1−−−! ker(∂n)) ⊗ A

Thus, if we had ker(d ⊗ A) ≃ ker(d) ⊗ A and coker(d ⊗ A) ≃ coker(d) ⊗ A, then we would deduce
Hn(X; A) ≃ Hn(C•(X; A)).

Definition 1.1. A functor F : Ab ! Ab is called:

• left exact if F preserves ker, or equivalently every left short exact sequence 0 ! A ! B ! C
is sent to a left short exact sequence 0 ! F (A) ! F (B) ! F (C) (a left short exact sequence
is of the form 0 ! ker(f) ! B

f−! C for arbitrary f),

• right exact if F preserves coker, or equivalently every right short exact sequence A ! B !
C ! 0 is sent to a right short exact sequence F (A) ! F (B) ! F (C) ! 0,

• exact if F is both left and right exact, or equivalently every short exact sequence 0 ! A !
B ! C ! 0 is sent to a short exact sequence 0 ! F (A) ! F (B) ! F (C) ! 0.

Whether a functor F commutes with homology is related to the exactness of F .

Lemma 1.2. Let F : Ab ! Ab be a functor and C a chain complex.

(1) If f is left exact, then there is a map Hn(F (C)) ! F (Hn(C)).

(2) If f is right exact, then there is a map F (Hn(C)) ! Hn(F (C)).
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(3) If f is exact, then there is an isomorphism F (Hn(C)) ≃ Hn(F (C)).

Proof. (1) Suppose F is left exact, so it preserves kernels. We have

Hn(F (C)) = coker(F (Cn+1(X)) F (∂n+1)−−−−−! ker(F (∂n))) ≃ coker(F (Cn+1(X)) F (∂n+1)−−−−−! F (ker(∂n))).

Cokernels are colimits, so even if F does not preserve them there is always an assembly map

coker(F (Cn+1(X)) F (∂n+1)−−−−−! F (ker(∂n))) ! F (coker(Cn+1(X) ∂n+1−−−! ker(∂n))).

Explicitly, this is a map

F (ker(∂n))/ Im(F (∂n+1)) ! F (ker(∂n)/ Im(∂n+1))

which comes from F (ker(∂n)) ! F (ker(∂n)/ Im(∂n+1)), where we notice that the composition

F (Im(∂n+1)) ! F (ker(∂n)) ! F (ker(∂n)/ Im(∂n+1))

is 0. This is a map Hn(F (C)) ! F (Hn(C)).

(2) Suppose F is right exact, so it preserves cokernels. The kernel is a limit, so even if F does not
preserve it there is always an assembly map (in the other direction) F (ker(∂n)) ! ker(F (∂n).
Explicitly, this comes from the map F (ker(∂n)) ! F (Cn), noticing that the composition

F (ker(∂n)) ! F (Cn) ! F (Cn−1)

is 0. Applying cokernel to this map, we get by functoriality

F (Hn(C)) = F (coker(Cn+1(X) ∂n+1−−−! ker(∂n))) ≃ coker(F (Cn+1(X)) F (∂n+1)−−−−−! F (ker(∂n)))

! coker(F (Cn+1(X)) F (∂n+1)−−−−−! ker(F (∂n)))) = Hn(F (C))

(3) If F is exact, then it preserves kernels and cokernels, so it preserves homology.

So, is the functor − ⊗ A : Ab ! Ab exact?

Proposition 1.3. − ⊗ A is always right exact, but not always left exact.

Proof. To see that − ⊗ A is right exact, the idea is that it is a left adjoint − ⊗ A ⊣ hom(A, −)
so it preserves all colimits, in particular coker. Explicitly, consider f : B ! C. The cokernel
coker(f) = C/ Im(f) has the universal property that homomorphisms coker(f) ! D correspond
to homomorphisms g : C ! D such that g ◦ f = 0. Similarly, homomorphisms coker(f ⊗ A) ! D
correspond to homomorphisms g : C ⊗A ! D such that g ◦(f ⊗A) = 0. However, a homomorphism
g : C ⊗ A ! D corresponds to a homomorphism into the internal hom ḡ : C ! hom(A, D). Under
this identification, the fact that the composition

B ⊗ A
f⊗A−−−! C ⊗ A

g−! D
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is 0 corresponds to the claim that the composition

B
f−! C

ḡ−! hom(A, D)

is 0. However, this corresponds to a homomorphism coker(f) ! hom(A, D), which corresponds to
a homomorphism coker(f) ⊗ A ! D. Thus, coker(f ⊗ A) and coker(f) ⊗ A have the same universal
property, so they are isomorphic.
For an example that is not left exact, consider A = Z/2 and the left short exact sequence 0 !

Z ×2−−! Z ! Z/2. Tensoring with Z/2 amounts to dividing by 2, so we get the sequence 0 ! Z/2 0−!
Z/2 id−! Z/2 which is not exact.

Remark 1.4. If F is right exact and C is non-negatively-graded, i.e. Ci = 0 for i < 0, then
F (H0(C)) ! H0(F (C)) is an isomorphism. This is because H0(C) = C0/ Im(∂1) = coker(∂1), and
no kernels are involved. In particular, for F = −⊗A and C = C•(X), we get H0(X)⊗A ≃ H0(X; A).

While − ⊗ A is generally not left exact, it is for some special A.

Lemma 1.5. If A is a free Abelian group, then − ⊗ A is exact.

Proof. Write A = Z⟨S⟩, it follows that B ⊗ A = B⟨S⟩. Consider f : B ! C, the induces f ⊗
A : B⟨S⟩ ! C⟨S⟩ maps

∑
i bisi =

∑
i f(bi)si. The kernel ker(f ⊗ A) consists of

∑
i bisi such that∑

i f(bi)si = 0, but because it is a formal sum this is equivalent to f(bi) = 0, i.e. bi ∈ ker(f). This
gives as an equivalence ker(f ⊗ A) ≃ ker(f)⟨S⟩ = ker(f) ⊗ A.

We conclude by saying that, while there is a map Hn(X) ⊗ A ! Hn(X; A), it is not necessarily an
isomorphism. To quantify how far away it is from an isomorphism, we need to a way to quantify
how far away − ⊗ A is from being exact. This is the goal for the remainder today.

2 Tensor product of chain complexes

Let C, D be chain complexes. We can define a bicomplex (C ⊠ D)i,j = Ci ⊗ Dj , with horizontal
boundaries coming from C and vertical boundaries coming from D (this is the commuting version
of bicomplexes, we can add minus signs when we want to take spectral sequences).

Definition 2.1. The tensor product of chain complexes is defined as the total complex C ⊗ D :=
Tot(C ⊠ D). That is, (C ⊗ D)n =

⊕
i+j=n Ci ⊗ Dj .

Example 2.2. For A ∈ Ab, let A ∈ Ch be the chain supported on degree 0:

· · · ! 0 ! A ! 0 ! · · · .

For any other chain C, we get that (C ⊗ A)n = Cn ⊗ A.

The operation C ⊗− : Ch ! Ch is a functor, and in particular sends isomorphisms to isomorphisms.
However, the main thing we care about in a chain complex is its homology, so we care about a weaker
notion of isomorphism.
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Definition 2.3. A chain map C ! D is called a quasi-isomorphism is the induced map on homology
Hn(C) ! Hn(D) is an isomorphism. If X ! Y is a homotopy equivalence of spaces, then C•(X) !
C•(Y ) is a quasi-isomorphism

The functor C ⊗ − does not preserve quasi-isomorphisms in general, for essentialy the same reason
that tensoring is not always exact.

Example 2.4. Consider the quasi-isomorphism

· · · 0 Z Z 0 · · ·

· · · 0 0 Z/2 0 · · ·

×2

with H0 = Z/2 and Hi = 0 for i ̸= 0. Tensoring with Z/2, we get

· · · 0 Z/2 Z/2 0 · · ·

· · · 0 0 Z/2 0 · · ·

0

which is no longer a quasi-isomorphism, as the top row has non-trivial H1 = Z/2.

In some cases C ⊗ − does preserve quasi-isomorphisms. To detect that, we will use spectral se-
quences.

2.1 Interlude on spectral sequences

Let C be a chain complex with an infinite increasing filtration 0 = C(0) ⊆ C(1) ⊆ · · · ⊆ C. We say
that the associated spectral sequence converges if C =

⋃
C(s) and Er

n,s stabilizes locally. In HW6
you proved that in this case, E∞

n,s = H(s)
n (C)/H(s−1)

n (C).

Lemma 2.5. Let C, D be chain complexes with converging filtrations C(s), D(s), and suppose
f : C ! D is a chain map such that f(C(s)) ⊆ D(s). In particular f induces a map on spectral
sequences Er

n,s(C) ! Er
n,s(D). If for some r this map is an isomorphism, then f is a quasi-

isomorphism.

Proof. If f is an isomorphism for some r, then by turning the pages it is an isomorphism for
every r′ > r, and in particular for ∞. From convergence, we get that f induces isomorphisms
H(s)

n (C)/H(s−1)
n (C) ∼−! H(s)

n (D)/H(s−1)
n (D). For s = 0 we get that H(0)

n (C) ∼−! H(0)
n (D), and by

induction we get H(s)
n (C) ∼−! H(s)

n (D). This can be seen from the diagram

0 H(s−1)
n (C) H(s)

n (C) H(s)
n (C)/H(s−1)

n (C) 0

0 H(s−1)
n (D) H(s)

n (D) H(s)
n (D)/H(s−1)

n (D) 0

∼ ∼
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And we have Hn(C) =
⋃

s H(s)
n (C) and Hn(D) =

⋃
s H(s)

n (D), so we get an isomorphism Hn(C) !
Hn(D).

The example we will apply this to is the horizontal filtration of a bicomplex,
Example 2.6. Suppose B is a non-negatively-graded bicomplex, meaning Bi,j = 0 if i < 0 or
j < 0. The horizontal filtration was defined as

Tot(B)<(s)
n =

⊕
0≤i≤s

Bn−i,i

The E0 page is Bn−s,s

B0,1 B1,1 B2,1

B0,0 B1,0 B2,0

and the E1 page is Hn(B•−s,s), with the differentials going down. Because we have the trivial group
below the zero horizontal line and above the diagonal line, every differential will eventually hit 0,
so this spectral sequence converges.

2.2 Preserving quasi-isomorphisms

Recall that we were asking when tensoring with a chain complex preserves quasi-isomorphism.
Proposition 2.7. Suppose C, D, D′ are non-negatively-graded chain complexes, such that f : D !
D′ is a quasi-isomorphism and Ci are free Abelian groups. Then C ⊗ f : C ⊗ D ! C ⊗ D′ is a
quasi-isomorphism.

Proof. Consider the vertical filtrations on C ⊗ D = Tot(C ⊠ D) and C ′ ⊗ D = Tot(C ′ ⊠ D). f
induces a map on the E1-pages

E1
n,s(C ⊗ D) = Hn(C•−s ⊗ Ds) ! Hn(C•−s ⊗ D′

s) = E1
n,s(C ⊗ D′)

This map is an isomorphism, because tensoring with a free Abelian group is exact. It follows that
Hn(C ⊗ D) ! Hn(C ⊗ D′) is an isomorphism.

3 Free resolution and Tor
We saw that tensoring with a chain complex of free Abelian groups is well-behaved. The process of
replacing a chain complex with a quasi-isomorphic chain complex of free Abelian groups is called
free resolution. We will only consider free resolutions of A.
Definition 3.1. Let A ∈ Ab, a free resolution of A is a non-negatively graded chain complex P of
free Abelian groups and a quasi-isomorphism P ! A:

· · · P2 P1 P0 0 · · ·

· · · 0 0 A 0 · · ·

f
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A free resolution always exists. In fact, we can always choose it to be of length 2. Let A be an
Abelian group, and suppose S ⊆ A is a set of generators (e.g. S = A), then we have a surjective
map f : Z⟨S⟩ ! A. Every subgroup of a free Abelian group is free, so ker(f) ⊆ Z⟨S⟩ is also free.

Lemma 3.2.
· · · 0 ker(f) Z⟨S⟩ 0 · · ·

· · · 0 0 A 0 · · ·

f

is a free resolution of A.

Proof. The 0-homology of the top row is Z⟨S⟩/ ker(f) ≃ A, and the other homologies are 0.

Remark 3.3. If we worked with modules over a ring instead of Abelian groups, we will still have
free resolutions, but they might be of infinite length, e.g. for modules over Z[x]. For modules over
a field, i.e. vector spaces, every vector space is free, so there are free resolutions of length 1.

Definition 3.4. Let A be an Abelian group with a free resolution P ! A. For any other Abelian
group B, define Torn(A, B) = Hn(P ⊗ B).

Proposition 3.5. Torn(B, A) is well-defined, i.e. does not depend on the free resolution P .

Proof. Suppose P, P ′ are free resolutions of A, and let Q be a free resolution of B. Because non-
negatively-graded free chain complexes preserve quasi-isomorphisms, we get

Hn(P ⊗ B) ≃ Hn(P ⊗ Q) ≃ Hn(A ⊗ Q) ≃ Hn(P ′ ⊗ Q) ≃ Hn(P ′ ⊗ B)

If we take P to be a free resolution of length 2, we see that Torn(A, B) = 0 for n ≥ 2. Also, we
know that tensoring with B commutes with H0, so Tor0(A, B) = H0(P ⊗B) ≃ H0(P )⊗B ≃ A⊗B.
Thus, only Tor1(A, B) is non-trivial. The reason we care about Tor is that it measures how far
A ⊗ − is from being left exact.

Proposition 3.6. Suppose 0 ! B ! C ! D ! 0 is a short exact sequence of Abelian groups, then

0 ! Tor1(A, B) ! Tor1(A, C) ! Tor1(A, D) ! A ⊗ B ! A ⊗ C ! A ⊗ D ! 0

is exact.

Proof. In homework.

The construction of Tor and the proof that it is well-defined required some sophisticated machinery,
but calculating Tor is pretty straightforward. Let us see this in a couple of example.

Example 3.7. Let A be a free Abelian group, then Tor1(A, B) = 0. This is because A is a free
resolution of itself, so Tor1(A, B) = H1(A ⊗ B) = 0.

Example 3.8. Let A = Z/n, then Tor1(Z/n, B) = {b ∈ B|nb = 0} is the subgroup of n-torsion
elements (this is the origin of the name). Consider the free resolution of Z/2 given by P = · · · !
0 ! Z ×n−−! Z, we get that P ⊗ B = · · · ! 0 ! B

×n−−! B, so H1(P ⊗ B) = ker(B ×n−−! B).
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Example 3.9. Let A = A1 ⊕ A2, then Tor1(A1 ⊕ A2, B) ≃ Tor1(A1, B) ⊕ Tor1(A2 ⊕ B). Suppose
P1, P2 are free resolutions of A1, A2, then P1 ⊕ P2 is a free resolution of A1 ⊕ A2. Thus

H1((P1 ⊕ P2) ⊗ B) ≃ H1(P1 ⊗ B ⊕ P2 ⊗ B) ≃ H1(P1 ⊗ B) ⊕ H1(P2 ⊗ B).

4 Ext

Up to now, we considered the operation A ⊗ −. An equally important operation is its right adjoint,
hom(A, −).

Lemma 4.1. hom(A, −) is left exact, but not necessarily right exact.

Proof. It is a right adjoint, so it preserves all limits, and in particular ker. To see an example where
it is not right exact, take the same old example Z ×2−−! Z ! Z/2 ! 0, which is sent by hom(Z/2, −)
to 0 ! 0 ! Z/2 ! 0, which is not exact.

To quantify how far hom(A, −) is from being right exact, we define the Ext groups:

Definition 4.2. Let A be an Abelian group with free resolution P•, and let B be another Abelian
group. Then we get a cochain complex

0 ! hom(P0, B) ! hom(P1, B) ! . . . ,

and we define Ext as it’s cohomology Extn(A, B) = Hn(hom(P•, B)).

As before, we get that Ext0(A, B) = hom(A, B) and that Extn(A, B) = 0 for n ≥ 2, so we only
care about Ext1.

Proposition 4.3. Suppose 0 ! B ! C ! D ! 0 is a short exact sequence of Abelian groups, then

0 ! hom(A, B) ! hom(A, C) ! hom(A, D) ! Ext1(A, B) ! Ext1(A, C) ! Ext1(A, D) ! 0

is exact.
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