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1 Overview
This is a talk prepared for the Oberwolfach Arbeitsgemeinschaft about the disproof of the telescope
conjecture. The talk is completely based on [BMCSY23].
The disproof of the telescope conjecture consists of two claims:

(1) every K(n + 1)-local spectra is cyclotomically complete, and

(2) there exists some T (n)-local ring spectrum R such that KT (n+1)(R) := LT (n+1)K(R) is not
cyclotomically complete.

To approach (2), we need to understand how T (n + 1)-local K-theory interacts with higher height
cyclotomic extensions. Our goal in this talk is to prove that T (n + 1)-local K-theory satisfies
redshift:

Theorem A. Let R be a T (n)-local ring spectrum, then there is an isomorphism

KT (n+1)(R[ω(n)
p∞ ]) ≃ KT (n+1)(R)[ω(n+1)

p∞ ]

The main tool in proving this theorem will be descent for T (n + 1)-local K-theory. In [CMNN22],
Clausen, Mathew, Naumann and Noel proved descent along finite p-groups:

Theorem 1.1. Let C be an Lf
n-local category (i.e. a stable category with Lf

n-local mapping
spectra) with G-action for a finite p-group G, then

KT (n+1)(C hG) ∼−! KT (n+1)(C )hG,

KT (n+1)(ChG) ∼
 − KT (n+1)(C )hG.

To consider arbitrary higher cyclotomic extensions, we need to generalize this result for groups in
space. Namely, we will prove a version where G could be a π-finite p-group, meaning a group in
spaces having finitely many non-vanishing homotopy groups, each a finite p-group.

Theorem B. Let C be an Lf
n-local category with G-action for a π-finite p-group G, then

KT (n+1)(C hG) ∼−! KT (n+1)(C )hG,

KT (n+1)(ChG) ∼
 − KT (n+1)(C )hG.
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Note that because Lf
n is a smashing localization, the inclusion CatLf

n
↪! Catperf is the forgetful

ModPerf(Lf
nS)(Catperf)! Catperf , so it preserves all limits and colimits. Thus, the limit and colimit

C hG, ChG can be taken either in CatLf
n

or in Catperf .
We will start by showing how Theorem A follows from Theorem B, and then prove Theorem B.

2 Cyclotomic redshift

Let R be a T (n)-local ring spectrum. We wish to apply Theorem B on Perf(R).

Lemma 2.1. If R is an Lf
n-local ring spectrum then Perf(R) is an Lf

n-local category.

Proof. As R ∈ ModLf
nS(Sp), and Perf is symmetric monoidal, it follows that

Perf(R) ∈ ModPerf(Lf
nS)(Catperf) ≃ CatLf

n

In fact, we only need Theorem B for the homotopy fixed points along a trivial G-action.

KT (n+1)(Perf(R)BG) ∼−! KT (n+1)(Perf(R))BG = KT (n+1)(R)BG ≃ KT (n+1)(R)[BG]

where the last isomorphism follows from the fact that SpT (n+1) is ∞-semiadditive. On the other
hand, it follows from [CMNN22, Proposition 4.15] that

KT (n+1)(Perf(R)BG) ≃ KT (n+1)(Perf(R[G])) = KT (n+1)(R[G]).

So we conclude:

Corollary 2.2. For every π-finite p-group G,

KT (n+1)(R[G]) ∼−! KT (n+1)(R)[BG]

Applying this to G = BnCpr , we get

KT (n+1)(R[BnCpr ]) ∼−! KT (n+1)(R)[Bn+1Cpr ].

Theorem 2.3 (Cyclotomic redshift). Let R ∈ CAlg(SpT (n)), then for every r ≤ ∞

KT (n+1)(R[ω(n)
pr ]) ∼−! KT (n+1)(R)[ω(n+1)

pr ].

Proof. The case r = ∞ follows as a filtered colimit of r < ∞. For r < ∞, Recall that we defined
R[ω(n)

pr ] by the decomposition

R[BnCpr ] ≃ R[BnCpr−1 ] × R[ω(n)
pr ]
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Moreover, the first term is compatible with the isomorphism of Corollary 2.2

KT (n+1)(R[BnCpr ]) KT (n+1)(R[BnCpr−1 ]) × KT (n+1)(R[ω(n)
pr ])

KT (n+1)(R)[Bn+1Cpr ] KT (n+1)(R)[Bn+1Cpr−1 ] × KT (n+1)(R)[ω(n+1)
pr ]

∼

∼ ∼

∼

So by uniqueness of decompositions, there is also an isomorphism in the second term. There is more
that needs to be said to show that this is an isomorphism of ring spectra, namely compatibility
with the idempotent.

3 Descent

Let G be a π-finite p-group and C ∈ CatBG
Lf

n
. To prove descent,

KT (n+1)(C hG) ∼−! KT (n+1)(C )hG,

KT (n+1)(ChG) ∼
 − KT (n+1)(C )hG,

we will first make a few simplifying maneuvers. The homotopy fixed points/orbits are limits/colimits
along BG, which is a connected π-finite p-space. We will prove this result more generally for
(co)limits along any π-finite p-space A, not necessarily connected. In other words, we want to prove
the functor

KT (n+1) : CatLf
n
! SpT (n+1)

commutes with π-finite p-space indexed (co)limits.

Definition 3.1. A category C ∈ Catperf is n-monochromatic if it is Lf
n-local and Lf

n−1C = 0.

Consider the subcategory of n-monochromatic categories CatMf
n

↪! CatLf
n
. This inclusion has a

right adjoint Mf
n : CatLf

n
! CatMf

n
, given by the fiber

Mf
n C ! C ! Lf

n−1C .

Lemma 3.2. The functor Mf
n : CatLf

n
! CatMf

n
commutes with all limits and colimits.

Proof. Mf
n commutes with limits as a right adjoint. Composing with the (colimit preserving) left

adjoint inclusion
CatLf

n

Mf
n−−! CatMf

n
↪! CatLf

n

is given by tensoring with Mf
n Perf(Lf

nS), so it also preserves colimits. Thus, Mf
n preserves colimits.
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Purity tells us that for C ∈ CatLf
n
, KT (n+1)(C ) depends only on the n-th monochromatic part

Mf
n C , meaning that there is a commuting triangle

CatLf
n

SpT (n+1)

CatMf
n

KT (n+1)

Mf
n KT (n+1)

Using Lemma 3.2, we reduce our goal to proving that

KT (n+1) : CatMf
n
! SpT (n+1)

commutes with π-finite p-space indexed (co)limits. This seems just as complicated, but now we can
use the following fact:

Proposition 3.3. CatMf
n

is ∞-semiadditive

Proof. The idea is that CatMf
n

≃ PrL
T (n),ω, which is the subcategory of PrL

T (n) on compactly gener-
ated categories and internal left adjoints. PrL

T (n) is ∞-semiadditive as a full subcategory of PrL that
is closed under colimits, and one can show that the ambidexterity data restricts to PrL

T (n),ω.

From the fact that both CatMf
n

and SpT (n+1) are ∞-semiadditive, we immediately see that com-
muting with π-finite p-spaces indexed limits and colimits is equivalent. In fact, even though we
ultimately use limit preservation, it will be easier to prove the result for colimits. Moreover, using
∞-semiadditivity, it is enough to check only very specific kinds of colimits.

Proposition 3.4. Let F : C ! D be a functor between p-typically ∞-semiadditive categories. If
F commutes with constant colimits indexed on π-finite p-spaces concentrated in a single homotopy
degree, then it commutes with all π-finite p-space indexed (co)limits.

Proof. The proof is by induction on the truncation level m of the indexing space A. The base case
m = −2 is trivial, let m ≥ −1. We will start by considering constant colimits over A. Denote
B = A≤m−1 and f : A ! B the canonical map, taking colimit along A is the same as taking the
colimits along the fibers Ab ! A

f−! B for every b ∈ B and then taking colimit along B. However,
each fiber is concentrated in homotopy degree m, and the diagram is constant on each fiber, so by
assumption F commutes with the fiber-wise colimits. Moreover, B is (m − 1)-truncated, so by the
inductive assumption F commutes with B-indexed colimits.
We will now extend to non-constant (co)limits. Because F commutes with (m − 1)-finite p-space
indexed (co)limits, it follows from [CSY20b] that there is a commuting diagram relating the norm
maps and the assembly maps for F :

FA! FA∗

A!F A∗F

NmC

∼

β∗

NmD

∼

β!
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so it follows that β! admits a retract. On the other hand, using the wrong way adjunction A∗ ⊣ A!
in C , we have the following diagram:

A!FA∗A! A!F

FA! FA!A
∗A! FA!

ϵ

∼ β!

η ϵ

where the middle isomorphism is the assembly along a constant diagram. This implies that β!
admits a section, from which it follows that β! is an isomorphism, and so also β∗.

Theorem 3.5. The functor
KT (n+1) : CatMf

n
! SpT (n+1)

commutes with π-finite p-space indexed (co)limits.

Proof. By Proposition 3.4, it is enough to show for constant colimits concentrated in a single
homotopical degree m. Namely, for such spaces A, we need to show that the assembley map

KT (n+1)(C )[A]! KT (n+1)(C [A])

is an isomorphism.
For m = 0, A is a finite set and KT (n+1) is exact, so in particular commutes with finite coproducts.
For m = 1, A = BG for G a finite p-group so the result follows from [CMNN22]. We proceed by
induction on m ≥ 2. By a corollary of the Schwede-Shipley Theorem [SS03], every C ∈ Catperf can
be written as a filtered colimit

C ≃ colim Perf(Ri)

where Ri is an endomorphism ring of an object in C . As C ∈ CatMf
n

, it follows that Ri ∈ Mf
n Sp,

and as a full subcategory of C it follows that Perf(Ri) ∈ CatMf
n

. Thus, as KT (n+1) commutes
with filtered colimits, it is enough to prove the case C = Perf(R). Note that A is connected, so by
semiadditivity Perf(R)[A] ≃ Perf(R)A ≃ Perf(R[ΩA]), and the assembly map is thus

KT (n+1)(R)[A]! KT (n+1)(R[ΩA]).

Moreover, as m ≥ 2, ΩA is also connected.
For height n = 0, R[ΩA] ≃ R and KT (1)(R)[A] ≃ KT (1)(R) [CSY20a], and the assembly map
is identified with the identity. Assume n ≥ 1. Using the bar construction, we can write A ≃
colim∆op Ak where Ak = (ΩA)k. Consider the commutative diagram

colim∆op KT (n+1)(R)[Ak] colim∆op KT (n+1)(R[ΩAk])

KT (n+1)(R)[colim∆op Ak] KT (n+1)(R[Ω colim∆op Ak])

We want to show that the bottom map is an isomorphism, we will show that all the others are:
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• Top follows from the inductive hypothesis, as Ak is concentrated in homotopy degree m − 1.

• Left is because KT (n+1)(R)[−] commutes with colimits

• Right is because Ω, R[−] and KT (n+1) commutes with sifted colimits for n ≥ 1.
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