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תקציר
מסוים. לתת-מבנה פרדיקט עם אלגברית סגורים שדות של תורה נחקרת בשניהם פרקים, לשני נחלקת התזה

ייתכן תת-שדה, F ו- אלגברית סגור שדה K כאשר (K,F ) זוגות של בתורה עוסק הראשון הפרק
ו- Cherlin, Van den Dries אלגברית, פסאודו-סגורים שדות על ממחקרם כחלק נוסף. מבנה בעל
האלמנטרית התורה הוא אינווריאנטים מאותם אחד אלו. לשדות אלמנטריים אינווריאנטים תיארו Macintyre
לחקירת משמעותי כלי הוא זה איווריאנט סוגים. ω בעלת מתאימה בשפה האבסולוטית, גלואה חבורת של
תורת (מבחינת אלגברית פסאודו-סגור שדה של שהמורכבות והאינטואיציה אלגברית, פסאודו-סגורים שדות
במספר עצמה את הוכיחה שלו האבסולוטית גלואה חבורת של האלמנטרית התורה ידי על נשלטת המודלים)
(n > 2) NSOPn היא האבסולוטית גלואה חבורת אם כי הוכיחה Chatzidakis למשל, מאז. תוצאות
גלואה חבורת כי ידוע .NTP1-ו NSOP1 לתכונות התוצאה את הרחיב Ramsey השדה. גם כך אז
מתוך .F את המרחיב אלגברית סגור שדה K כאשר (K,F ) בזוג לפירוש ניתנת F שדה של האבסולוטית

כאלו. בזוגות העניין אצלנו נולד כך
Keisler ידי על ניתנה תת-שדה F ו- אלגברית סגור שדה K כאשר (K,F ) זוגות על מוקדמת תוצאה
אלמנטרית. שקולים (K,F ו-(′ (K,F ) הזוגות גם אזי אלמנטרית, שקולים F ו-′ F שדות אם כי שהראה
F כאשר בנוסף, יציב. ובפרט belle paire הוא (K,F ) הזוג אז הוא, גם אלגברית סגור F השדה אם

כמתים. חילוץ יש (K,F ) לזוג עבורה השפה של הרחבה נתנה Delon אלגברית, סגור
כמו כאלו, זוגות של בסיסיות תורת-המודליות תכונות חקר היא האחת מטרות. שתי קיימות זה לפרק
הסיווג מתורת תכונות של שימור הוכחת היא השנייה ושלמות-מודלית. כמתים חילוץ שלמות, רווים, מודלים
אז NSOP1/NIP (על-/ω-)יציבה/פשוטה/ היא F של התורה אם כי נראה אנו .(K,F ) לזוג F מהשדה
NSOP1 היא אלגברית פסאודו-סגור שדה של שהתורה נאמת מיידית, כמסקנה .(K,F ) של התורה גם כך
אנו נוספות, כמסקנות .NSOP1 היא שלו האבסולוטית גלואה חבורת של האלמנטרית התורה אם ורק אם
של התורות את ומסווגים פשוטה, היא (K,F ) הזוג של התורה אז פסאודו-סופי שדה F כאשר כי מסיקים

שלהן. הסדר טיפוס לפי אלגברית סגורים שדות של שרשראות

קבוע). תת-חוג (מעל לתת-מודול פרדיקט עם שדות של ישית הסגורית המודלים במחלקת עוסק השני הפרק
שקיים כמתים חסר סופי מבנה כל — הגדרתם מתוקף גנרי, או שרירותי, אופי יש ישית סגורית למודולים
המודלים למחלקת ראשון מסדר אקסיומטיזציה מציאת עצמו. במודל גם קיים המודל של הרחבה באיזושהי
תהיה זו אקסיומטיזציה אינדוקטיבית והתורה ובמידה הגנריים, המודלים לחקירת חזק כלי היא ישית הסגורים

המודלי. העמית
ממציין לשדות מודלי עמית מצא הוא ובפרט גנרי, תת-מבנה עם מודלים של התורה את חקר d’Elbée
ומצא חזקה, ואי-תלות חלשה אי-תלות יחסי הגדיר הוא בנוסף, סופי. תת-שדה מעל וקטורי תת-מרחב עם חיובי
שדות קים. אי-תלות היא חלשה אי-תלות זה כשבמקרה ,NSOP1 להיות גנרי תת-מבנה עם למודל תנאים
שלהם המודלי העמית ולכן האלה, התנאים את מקיימים סופי תת-שדה מעל וקטורי תת-מרחב עם חיובי ממציין

פשוט. אינו שלהם המודלי העמית כי נמצא בנוסף, .NSOP1 הוא
אינסופי. תת-שדה מעל הוא הוקטורי המרחב כאשר או ,0 ממציין לשדות זו תוצאה להכליל לנסות טבעי
הסגורים למודלים כי d’Elbéeהוכיח שדה). הוא סופי (חוג אינסופי תת-חוג מעל למודולים היא נוספת הכללה
ראשון, מסדר אקסיומטיזציה אין (Z מעל תת-מודול (קרי, אבלית תת-חבורה עם 0 ממציין שדות של ישית
במסגרת אינדוקטיבית תורה של ישית סגורים מודלים לחקור ניתן כן, פי על אף מודלי. עמית קיים לא ובפרט
שבמקום היא הכוונה בתמצית, ישית. הסגורים המודלים קטגוריית או רובינסון, לוגיקת הנקראת שונה, לוגית
זו במסגרת בינהם. ושיכונים ישית סגורים מודלים חוקרים אנו ביניהם אלמנטריים ושיכונים מודלים לחקור
E : F+ → F× הומומורפיזם עם F שדות — אקספוננט עם שדות Kirby ו- Haykazyan חקרו

הכפלית. לחבורה החיבורית מהחבורה
תת-מודול. עם שדות של התורה בעבור Kirby ו- Haykazyan של צעדיהם בעקבות נלך זה בפרק
באופן ראשון מסדר יהיה לא זה תיאור תת-מודול. עם שדות של ישית הסגורים המודלים של תיאור ניתן תחילה,
כי נוכיח מכן, לאחר סופי. תת-חוג מעל הוא ותת-המודול חיובי המציין כאשר ראשון מסדר יהיה אך כללי,
ההוכחה פשוטה. אינה ובפרט ,NTP2 אינה אך ,NSOP1 היא זו תורה של ישית הסגורים המודלים קטגוריית
מקיים שהוא ונראה החזקה, אי-התלות יחס את נחקור בנוסף החלשה. אי-התלות ביחס תשתמש NSOP1 של

.n לכל n-תצרופת



Abstract

The thesis is split into two chapters.
The first chapter is concerned with the model-theoretic study of pairs (K,F )

where K is an algebraically closed field and F is a distinguished subfield of K
allowing extra structure. We study the basic model-theoretic properties of those
pairs, such as quantifier elimination, model-completeness and saturated models.
We also prove some preservation results of classification-theoretic notions such
as stability, simplicity, NSOP1, and NIP. As an application, we conclude that a
PAC field is NSOP1 iff its absolute Galois group is (as a profinite group).

The second chapter deals with the class of existentially closed models of
fields with a distinguished submodule (over a fixed subring). In the positive
characteristic case, this class is elementary and was investigated by d’Elbée in
[dE21a]. Here we study this class in Robinson’s logic, meaning the category
of existentially closed models with embeddings following Haykazyan and Kirby,
and prove that in this context this class is NSOP1 and TP2.
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Chapter I

Algebraically closed fields
with a distinguished
subfield

I.1 Introduction
In their study of pseudo-algebraically closed fields, or PAC fields (known at that
time as regularly closed fields, for obvious reasons, see Definition I.6.8) Cherlin,
van den Dries and Macintyre [CvdDM80, CvdDM81] described elementary in-
variants for those fields. This was inspired by the work of Ax on pseudo-finite
fields. Among those invariants is the elementary theory of the absolute Galois
group of those fields in a suitable omega-sorted language, called the inverse
system of the absolute Galois group. It was already clear to the authors of
[CvdDM80, CvdDM81] that this invariant is an essential tool for the study of
PAC fields. The intuition that the model theoretic complexity of the theory of
PAC fields is mainly controlled by the theory of its absolute Galois group was
confirmed by numerous results since then. For example, Chatzidakis [Cha19]
proved that if the inverse system of the absolute Galois group of a PAC field
is NSOPn (n > 2), then so is the theory of the field. Ramsey [Ram18] proved
the corresponding results for NTP1 and NSOP1. It is a fact that the inverse
system of the absolute Galois group of a field F is interpretable in the theory
of the pair (K,F ) for any algebraically closed field K extending F (see [Cha02,
Proposition 5.5]). This motivated our interest in the model-theoretic study of
such pairs (K,F ).

The model-theoretic study of pairs of fields goes back to Tarski when he
raised in [Tar51] the question of the decidability of the pair (R,R ∩ Qalg) (the
reals with a predicate for the reals algebraic over Q). The (positive) answer was
given by Robinson in [Rob59], who gave a full set of axioms for the theories of
(R,R ∩ Qalg) and (C,Qalg). The celebrated work of Morley and of Shelah in
the 70’s created a growing interest in classification of first-order theories, and
in particular of theories of fields and their expansions. It was known in the 80’s
that the theory of (C,Qalg) is stable1 and Poizat [Poi83] generalized this result

1See the first sentence of [Poi83].
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to a more general context: he gave a criterion for the stability of special pairs of
elementary substructures N �M (called “belle paires”), under a strong stability
assumption on the theory of M (and N) called nfcp, introduced by Keisler
[Kei67]. This was later generalized to the context of simple theories [BYPV03]
with the notion of lovely pairs. Back to algebraically closed fields, Delon [Del12]
introduced a language for quantifier elimination for pairs of algebraically closed
fields and pairs of algebraically closed valued fields. Recently, Martin-Pizarro
and Ziegler [MPZ20] proved that the theory of proper pairs of algebraically
closed fields is equational, by a deep analysis of definable sets.

As was mentioned above, the main topic of this chapter is another general-
ization of pairs of algebraically closed fields, which are pairs (K,F ) where F is
an arbitrary field, perhaps with some extra structure (in a language extending
the language of fields), and K ⊃ F is an algebraically closed infinite extension.
An early result about this theory was given by Keisler [Kei64]: if F and F ′ are
two elementarily equivalent fields (not real-closed nor algebraically closed and
without extra structure), then the pairs (K,F ) and (K ′, F ′) are also elemen-
tarily equivalent, for any algebraically closed extensions K ⊃ F , K ′ ⊃ F ′. In
[HKR18], Hils, Kamensky and Rideau gave a quantifier elimination result for
the theory of the pairs (K,F ), which we also obtain in Theorem I.4.3. We were
not aware of this result while writing the proof and we decided to keep our proof
for completeness.

The purpose of this chapter is twofold. For one, we are interested in the ba-
sic properties of the theory of the pairs such as saturated models, completeness,
quantifier elimination and model-completeness. For example, as we mentioned
above we prove quantifier elimination for the theory of pairs (K,F ) (see The-
orem I.4.3) in a natural expansion of the language following Delon’s approach
[Del12]. This allows us to isolate a condition implying the model-completeness
of the theory of the pair (K,F ) which is weaker than the model complete-
ness of the theory of F (see Theorem I.4.12). Secondly, we prove preservation
of several classification-theoretic properties: if the theory of F is (ω-/super)
stable/NIP/simple/NSOP1, then so is the theory of the pair (K,F ) (see Corol-
laries I.5.25 and I.5.26 and Theorems I.5.9, I.5.13, I.5.16 and I.5.34). In the case
of NSOP1, we also identify Kim-independence for algebraically closed sets (see
Proposition I.5.11).

As immediate applications we conclude that the theory of a PAC field F
in the language of rings is NSOP1 iff the theory of its Galois group is (see
Proposition I.6.7) and prove that when F is pseudofinite in the language of
rings the theory of the pair (K,F ) is simple. In addition, we consider the theory
ACFI of a chain of algebraically closed fields ordered by some linear order I, and
discuss its properties depending on the order type of I (see Proposition I.6.4).

I.2 Preliminaries
In this section we present common definitions and results from fields and model
theory. We will start by setting up some basic notation for the whole paper.
Notation I.2.1. Whenever A is a field, let A be its algebraic closure. Whenever
A and B are subfields of a larger field, let A.B be their field compositum. If A is
a field and S is a set, then let A(S) be the field extension of A by the elements of
S. Say that the set S is algebraically independent over A if each element s ∈ S

5



is algebraically independent over A(S \ {s}). If R is a sub-ring of a larger field,
then denote by Frac(R) the field generated by R. Unless specified otherwise, all
the fields will be subfields of a large algebraically closed field.

I.2.1 Linear disjointness
Definition I.2.2. Let A, B and C be fields with C ⊆ A ∩B.

1. Say that A is linearly disjoint from B over C if whenever a0, . . . , an−1 ∈ A
are linearly independent over C they are also linearly independent over B.
Denote this by A |⌣

l

C
B.

2. Say thatA is algebraically disjoint fromB over C if whenever a0, . . . , an−1 ∈
A are algebraically independent over C, then they are also algebraically
independent over B. This is the same as the non-forking independence in
ACF, which we will denote A |⌣

ACF

C
B.

Fact I.2.3 ([Mor96, Proposition 20.2]). Let A, B and C be fields with C ⊆ A∩B.
Construct a map A ⊗C B → A[B] by mapping a ⊗ b 7→ ab. This map is an
isomorphism iff A |⌣

l

C
B.

Fact I.2.4. The following is a list of useful model theoretic properties that |⌣
l

has inside ACF. Let A, B, C, D, A′, B′ and C ′ be fields with C ⊆ A ∩ B,
C ′ ⊆ A′ ∩B′ and B ⊆ D.

• (Invariance) if ABC ≡ A′B′C ′ and A |⌣
l

C
B, then A′ |⌣

l

C′ B
′.

• (Monotonicity) if A |⌣
l

C
D, then A |⌣

l

C
B.

• (Base monotonicity) if A |⌣
l

C
D, then A.B |⌣

l

B
D.

• (Transitivity) if A |⌣
l

C
B and A.B |⌣

l

B
D, then A |⌣

l

C
D.

• (Symmetry) if A |⌣
l

C
B, then B |⌣

l

C
A.

• (Stationarity) if A ≡C A′ and A |⌣
l

C
B, A′ |⌣

l

C
B, then A ≡B A′.

• (Local character) for a finite tuple a, there exists a countable subfield
B0 ⊆ B, such that B0(a) |⌣

l

B0
B.

Proof. Invariance is trivial. Proofs for monotonicity, base monotonicity and
transitivity can be found in [FJ08, Lemma 2.5.3], symmetry is proven in [FJ08,
Lemma 2.5.1]. Stationarity follows directly from Fact I.2.3 and quantifier elim-
ination in ACF.

Local character follows from [Lan72, Theorem III.7, Proposition III.6 and
Theorem III.8], by setting B0 to be the field of definition of the locus of a over
B. This gives an even stronger result, as B0 is finitely generated and not merely
countable. For a more direct proof of local character, see Remark I.5.2.

Corollary I.2.5. Let A0, B0, C0, A1, B1 and C1 be fields with C0 ⊆ A0 ∩B0,
C1 ⊆ A1 ∩ B1, such that A0 |⌣

l

C0
B0, A1 |⌣

l

C1
B1. Suppose there are isomor-

phism f : A0 → A1, g : B0 → B1 such that f |C0
= g|C0

. Then there is a unique
isomorphism F : A0.B0 → A1.B1 such that F |A0

= f , F |B0
= g.
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Proof. Consider A0, A1, B0 and B1 as tuples, such that f and g match the tu-
ples. Extend g to an automorphism σ arbitrarily. From invariance, by applying
σ to A0 |⌣

l

C0
B0, we get σ(A0) |⌣

l

C1
B1. From stationarity σ(A0) ≡B1

A1, let τ
be an automorphism witnessing the equivalence. Let F = (τ ◦σ)|A0.B0

, we have
F (A0) = τ(σ(A0)) = A1 and F (B0) = τ(σ(B0)) = τ(B1) = B1 as tuples. In
particular, F : A0.B0 → A1.B1 is an isomorphism, and from the way we chose
the tuples F |A0 = f and F |B0 = g.

Definition I.2.6. A field extension A ⊆ B is called:

• regular if A |⌣
l

A
B,

• separable if A1/p |⌣
l

A
B, where p = char(A) > 0 and A1/p is the field of

p-th roots of all elements in A (if char(A) = 0, then all extensions are
separable), and

• relatively algebraically closed if A ∩B = A.

Fact I.2.7. Suppose A ⊆ B is a field extension.

1. [FJ08, Lemma 2.6.4] The extension A ⊆ B is regular iff it is separable
and relatively algebraically closed.

2. [FJ08, Lemma 2.6.7] If the extension A ⊆ B is regular and C is a field
extending A such that B |⌣

ACF

A
C, then B |⌣

l

A
C.

Lemma I.2.8. If A ⊆ B is a regular field extension and σ : B → B′ is an
isomorphism of fields, then σ(A) ⊆ B′ is regular.

Proof. We can extend σ to the algebraic closure, σ̃ : B → B′. From A |⌣
l

A
B we

get by invariance σ̃(A) |⌣
l

σ(A)
B′. But σ̃(A) = σ(A), so we have σ(A) |⌣

l

σ(A)
B′

as needed.

Lemma I.2.9. If A ⊆ B is a regular field extension and S is a set algebraically
independent over B, then A(S) |⌣

l

A
B.

Proof. As S is algebraically independent overB, we haveA(S) |⌣
ACF

A
B. Fact I.2.7(2)

implies that A(S) |⌣
l

A
B.

I.2.2 Language of regular extensions
In [Mac08], Macintyre defines relations in the language of rings that are pre-
served in a field extension iff it is regular. We will present those relations,
and use them to expand a theory of fields2 in such a way that the models are
the same but for any two models M,N , N extends M iff it is a regular field
extension.

Fact I.2.10 ([Mac08, §4.7]). Let A ⊆ B be a field extension.

1. The extension is relatively algebraically closed iff it preserves the relations
Soln(x0, . . . , xn−1) = ∃y(x0 + x1y + · · ·+ xn−1y

n−1 + yn = 0) for n ≥ 1.
2By a theory of fields, we mean a theory in a language expanding the language of rings

which contains all the fields axioms.
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2. For p = char(A), the extension is separable iff it preserves the relations
Dn,p(x0, . . . , xn−1) = ∃y0, . . . , yn−1(y

p
0x0 + · · ·+ ypn−1xn−1 = 0) for n ≥ 1

(note that if p = 0, Dn,p is quantifier-free definable).

Corollary I.2.11. Suppose M and N are fields. If M ≺ N , then M ⊆ N is a
regular extension.

Proof. The fact that M ≺ N implies in particular that M ⊆ N is a field exten-
sion that preserves Soln and Dn,p (p = char(A)). By Fact I.2.10 the extension
M ⊆ N is relatively algebraically closed and separable, so by Fact I.2.7(1) it is
a regular extension.

Definition I.2.12. Let T be a theory of fields in a language L expanding the
language of rings. Define Lreg = L∪{Soln}n≥1∪

{
D̃n,p

}
n≥1,p∈Primes∪{0}

, where

Soln, D̃n,p are n-ary relations, and extend T to Treg in Lreg by defining Soln as
above and defining

D̃n,p = Dn,p ∧ (1 + · · ·+ 1︸ ︷︷ ︸
p

= 0).

Lemma I.2.13. Let T be a theory of fields and let Q,R |= T with Q ⊆ R
a substructure. By adding definable relations, Q and R can be expanded to
models of Treg. Then Q is an Lreg-substructure of R iff Q ⊆ R is a regular field
extension.

Proof. Let p = char(Q). Note that by Facts I.2.7 and I.2.10, it is enough to
prove that Q is an Lreg-substructure of R iff the extension Q ⊆ R preserves Soln
and Dn,p for all n. Indeed, this equivalence holds because D̃n,p is equivalent to
Dn,p and D̃n,q is trivially false for any prime q 6= p.

I.2.3 NSOP1

In this subsection we will review the definition and basic properties of NSOP1

theories.
We will work in a monster model M (large, saturated) of a complete theory

T .

Definition I.2.14. A formula ϕ(x; y) has SOP1 if there is a tree of tuples
(bη)η∈2<ω such that

• for all η ∈ 2ω,
{
ϕ(x; bη|α) | α < ω

}
is consistent,

• for all η ∈ 2<ω, if ν� η ⌢ 〈0〉, then
{
ϕ(x; bν), ϕ(b; aη⌢⟨1⟩

}
is inconsistent.

We say that a theory T is SOP1 if some formula has SOP1 modulo T . Otherwise,
T is NSOP1.

Definition I.2.15. Let A be a set and a and b tuples, say that a is coheir
independent of b over A if the type tp(a/Ab) is finitely satisfiable in A, and
denote a |⌣

u

A
b. A sequence (ai)i∈I is an A-indiscernible coheir sequence if it is

A-indiscernible and ai |⌣
u

A
a<i

Using coheir-independence, we can use a different criterion for NSOP1, due
to [CR16, Theorem 5.7].
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Fact I.2.16 (Weak independent amalgamation). The theory T is NSOP1 iff
given any model M |= T and tuples a0b0 ≡M a1b1 such that b1 |⌣

u

M
b0 and

bi |⌣
u

M
ai for i = 0, 1, there exists a such that ab0 ≡M ab1 ≡M a0b0.

Kim-dividing, and its extension Kim-forking, were defined in [KR20], over
arbitrary sets. For our purposes we will give a simplified definition, which we
will call Kimu-dividing, and define it only over models.

Definition I.2.17. A formula ϕ(x, b) Kimu-divides over a model M if there
exists an M -indiscernible coheir sequence (bi)i<ω with b ≡M bi, such that
{ϕ(x, bi)}i<ω is inconsistent. A formula Kimu-forks over M if it implies a dis-
junction of Kimu-dividing formulas over M .

A type Kimu-divides (Kimu-forks) over M if it implies a Kimu-dividing
(Kimu-forking) formula over M . Denote a |⌣

K

M
b when the type tp(a/Mb) does

not Kimu-fork over M .

Remark I.2.18. In this definition, (bi)i<ω is a Morley sequence in a restriction
of a global coheir type. In the original definition of Kim-dividing, the global
coheir type is replaced with a global invariant type. By Kim’s lemma for Kim-
dividing [KR20, Theorem 3.16], those definitions are equivalent for NSOP1

theories.

Remark I.2.19. The type tp(a/Mb) does not Kimu-divide over M iff for every
M -indiscernible coheir sequence (bi)i<ω with b ≡M bi, there exists a′ such that
ab ≡M a′bi for every i < ω.

Fact I.2.20. Suppose T is NSOP1, then

1. [KR20, Theorem 3.16] If ϕ(x, b) Kim-divides over M |= T , then for every
M -indiscernible coheir sequence (bi)i<ω with b ≡M bi, {ϕ(x, bi)}i<ω is
inconsistent.

2. [KR20, Proposition 3.19] Kim-dividing is equivalent to Kim-forking over
models.

3. [KR20, Theorem 5.16] |⌣
K is symmetric over models.

4. [KR20, Corolary 5.17] Let M |= T , a |⌣
K

M
b ⇐⇒ acl(a) |⌣

K

M
b ⇐⇒

a |⌣
K

M
acl(b).

5. [KR20, Proposition 8.8] T is simple iff |⌣
K satisfies base monotonicity

over models: if M,N |= T and M ⊆ N , then a |⌣
K

M
Nb implies a |⌣

K

N
b.

6. [KR20, Proposition 8.4] T is simple iff |⌣
K

= |⌣
f over models.

I.3 Basic properties of ACFT

In this section we will define and study the basic properties of ACFT , the
theory of algebraically closed fields with a distinguished subfield (in an arbitrary
language). We will also consider expansions of the theory by definable relations
and functions, that Delon defined to study pairs of ACF in [Del12].
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I.3.1 Delon’s language
Definition I.3.1. Let T be a theory of fields (not necessarily complete), in a
language expanding the language of rings L ⊇ Lrings. Expand L to the language
LP = L ∪ {P}, with P a unitary predicate, and expand ACF to ACFT in the
language LP by adding the following axioms:

1. P is a model of T . This can be achieved by taking all the axioms of T
and restricting the quantifiers to be over P .

2. For every n-ary function symbol f ∈ L \ Lrings, if x0, . . . xn−1 ∈ P , then
f(x0, . . . , xn−1) ∈ P . Else, if some xi /∈ P , then we do not care about the
value of f(x0, . . . , xn−1), and we can set it arbitrarily to 0.

3. For every n-ary relation symbol R ∈ L \ Lrings, if some xi /∈ P , then
¬R(x0, . . . , xn−1). That is, R ⊆ Pn.

4. The degree of the field extension of the whole model over P is infinite,
i.e. the model has infinite dimension as a vector space over P . By the
Artin-Schreier theorem [AS27], it is enough to assert that the degree is at
least 3.

Remark I.3.2. The assumption that the degree of the model over P is infinite,
that is, for M |= ACFT , [M : PM ] = ∞, always holds when models of T are
not algebraically closed or real closed, because in that case [PM : PM ] = ∞.
When models of T are algebraically closed, it simply means that M 6= PM , i.e.
(M,PM ) is a proper pair. The only case excluded is when models of T are real
closed and M = PM , but then (PM , PM ) is definable in PM .
Definition I.3.3. Let T , L be as above. Consider the following definable
relations and functions over ACFT :

• For n ≥ 1, define the n-ary relation ln by ln(x0, . . . , xn−1) iff x0, . . . , xn−1

are linearly independent over P .

• For n ≥ 1, suppose we have ln(x0, . . . , xn−1) and ¬ln+1(x0, . . . , xn). That
is, x0, . . . , xn−1 are linearly independent over P and xn is in their span
over P . Then, there are unique yi ∈ P such that xn = y0x0 + · · · +
yn−1xn−1. Define the n+1-ary function fn,i by fn,i(xn;x0, . . . , xn−1) = yi.
If x0, . . . , xn do not satisfy this condition, then we do not care about the
value of fn,i(xn;x0, . . . , xn−1) and can set it arbitrarily to 0.

Expand ACFT to ACFldT in the language Lld = LP ∪ {ln}n≥1, by defining ln

as above. Expand ACFldT to ACFfT in the language Lf = Lld ∪ {fn,i}n>i≥0, by
defining fn,i as above.
Notation I.3.4. If M |= ACFT , then let PM be the predicate P in M with
the associated L-structure. If A ⊆ M is a subset, then let PA = PM ∩ A. This
notation is used instead of the usual P (M) and P (A), because the notation P (A)
is reserved for the field extension of P by A.
Definition I.3.5. Call a formula ϕ(x) ∈ LP bounded if every quantifier in ϕ is
over P .
Remark I.3.6. For a formula ϕ(x) ∈ L there is a corresponding bounded
formula ϕP (x) ∈ LP created by restricting every quantifier to be over P and
asserting x ∈ P . For M |= ACFT , we have ϕP (M) = ϕ(PM ).
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I.3.2 Substructures and isomorphisms
Lemma I.3.7. Let M |= ACFfT and A ⊆ M a subset. Then A is an Lf -
substructure iff PA ⊆ PM is an L-substructure, A is a subring, PA is a subfield
and Frac(A) |⌣

l

PA
PM .

Proof. Suppose A ⊆ M is an Lf -substructure. We get that PA ⊆ PM is an L-
substructure, because for any function symbol f ∈ L and a ∈ PA, f(a) ∈ A as
A ⊆M is a substructure, and also f(a) ∈ PM because of the axioms of ACFT ,
so f(a) ∈ A ∩ PM = PA. It is clear that A is a subring, and so is PA, but for
every 0 6= a ∈ PA, a−1 = f1,0(1; a) ∈ PA, so PA is also a subfield. By [Lan72,
Chapter III, Criterion 1], to prove that Frac(A) |⌣

l

PA
PM , it is enough to show

that if a0, . . . , an−1 ∈ A are linearly dependent over PM , then they are linearly
dependent over PA. Suppose a0, . . . , an−1 ∈ A are linearly dependent over PM .
If a0 = 0, then the tuple is trivially linearly dependent over PA. Else, there is
some maximal 1 ≤ k < n such that a0, . . . , ak−1 are linearly independent over
PM , so we have |= lk(a0, .., ak−1) and |= ¬lk+1(a0, . . . , ak). Hence we can look
at pi = fk,i(ak; a0, . . . , ak−1) ∈ PM , which give us ak = p0a0 + · · · + pk−1ak−1.
Because A is a substructure, pi ∈ A, so pi ∈ PA. Thus, a0, . . . , an−1 are linearly
dependent over PA.

In the other direction, suppose A is a subring, PA is a subfield, PA ⊆ PM is
an L-substructure and Frac(A) |⌣

l

PA
PM . It follows that Frac(A) ∩ PM = PA,

and in particular A ∩ PM = PA. For any function symbol f ∈ L \ Lrings

and a0, . . . , an−1 ∈ A, if a0, . . . , an−1 ∈ PA, then f(a0, . . . , an−1) ∈ PA as
PA ⊆ PM is a substructure, and else we defined f(a0, . . . , an−1) = 0 ∈ A. It
remains to check that A is closed under fn,i. Let a0, . . . , an ∈ A and suppose
|= ln(a0, . . . , an−1), |= ¬ln+1(a0, . . . , an). Let pi = fn,i(an; a0, . . . , an−1), that is
pi ∈ PM and an = p0a0 + · · ·+ pn−1an−1. We know that a0, . . . , an are linearly
dependent over PM , so by Frac(A) |⌣

l

PA
PM they are linearly dependent over

PA. However, a0, . . . , an−1 must be linearly independent over PA, as they are
linearly independent over PM , so an can be written as a linear combination of
a0, . . . , an−1 over PA. This linear combination is in particular over PM , but
an = p0a0 + · · · + pn−1an−1 is the unique linear combination over PM , so we
must have p0, . . . , pn−1 ∈ PA, as needed.

Corollary I.3.8. If M |= ACFfT and A ⊆ M is an Lf -substructure, then
Frac(A) ⊆M is an Lf -substructure with PFrac(A) = PA.

Proof. Lemma I.3.7 implies that Frac(A) |⌣
l

PA
PM , and in particular PFrac(A) =

PM ∩ Frac(A) = PA. Thus, PFrac(A) ⊆ PM is a subfield and an L-substructure,
Frac(A) is a subring (even subfield) and Frac(A) |⌣

l

PFrac(A)
PM , so by Lemma I.3.7

Frac(A) ⊆M is an Lf -substructure.

Lemma I.3.9. Let M,N |= ACFfT and let A ⊆M , B ⊆ N be Lf -substructures.
A map σ : A→ B is an Lf -isomorphism iff σ is an isomorphism of rings such
that σ(PA) = PB and σ|PA

: PA → PB is an L-isomorphism.

Proof. If σ is an Lf isomorphism, then it is clearly an isomorphism of rings,
σ(PA) = PB because σ preserves P and σ|PA

: PA → PB is an L-isomorphism
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because Lf expands L on P . For the other direction, we need to show that σ pre-
serves ln, fn,i. Let a0, . . . , an−1 ∈ A with |= ln(a0, . . . , an−1). Suppose we have
|= ¬ln(σ(a0), . . . , σ(an−1)), i.e. σ(a0), . . . , σ(an−1) are linearly dependent over
PN . Lemma I.3.7 implies that Frac(B) |⌣

l

PB
PN , so σ(a0), . . . , σ(an−1) are also

linearly dependent over PB . There are q0, . . . , qn−1 ∈ PB such that q0σ(a0) +
· · ·+qn−1σ(an−1) = 0 By applying σ−1 we get σ−1(q0)a0+· · ·+σ−1(qn−1)an−1 =
0, however σ−1(q0), . . . , σ

−1(qn−1) ∈ PA, in contradiction to |= ln(a0, . . . , an−1).
The other direction follows from symmetry. Now suppose we have a0, . . . , an ∈
A with |= ln(a0, . . . , an−1) and |= ¬ln+1(a0, . . . , an). By the first part, we
also have |= ln(σ(a0), . . . , σ(an−1)) and |= ¬ln+1(σ(a0), . . . , σ(an)). Let pi =
fn,i(an; a0, . . . , an−1) ∈ PA, an = p0a0 + · · · + pn−1an−1. Apply σ to get
σ(an) = σ(p0)σ(a0)+ · · ·+σ(pn−1)σ(an−1), but σ(p0), . . . , σ(pn−1) ∈ PB , so by
uniqueness σ(pi) = fn,i(σ(an);σ(a0), . . . , σ(an−1).

Lemma I.3.10. Let M,N |= ACFT . By adding definable relations and func-
tions, M and N can be expanded to models of ACFldT , ACFfT . With those
expansions, the following are equivalent:

1. M ⊆ N is an Lf -substructure.

2. M ⊆ N is an Lld-substructure.

3. M ⊆ N is a subfield, PM ⊆ PN is an L-substructure and M |⌣
l

PM
PN .

Proof. 1 =⇒ 2: Lld is a restriction of Lf .
2 =⇒ 3: It is clear that M ⊆ N is a subfield and PM ⊆ PN as sets. For

every quantifier free formula ϕ(x) ∈ L and a ∈ PM , PM |= ϕ(a) ⇐⇒ M |=
ϕ(a) ∧ a ∈ P ⇐⇒ N |= ϕ(a) ∧ a ∈ P ⇐⇒ PN |= ϕ(a), so PM is an L-
substructure of PN . Let a0, . . . , an−1 ∈ M be linearly independent over PM ,
M |= ln(a0, . . . , an−1) =⇒ N |= ln(a0, . . . , an−1), so a0, . . . , an−1 are linearly
independent over PN . Thus, M |⌣

l

PM
PN .

3 =⇒ 1: Let M ′ be the Lf -structure with the same underlying set as M ,
but with structure induced as a subset of N . Note that M ′ ⊆ N is really an
Lf -substructure, from Lemma I.3.7. To prove that M is an Lf -substructure of
N , we need to show that M and M ′ have the same structure, that is that the
identity map id :M →M ′ is an Lf -isomorphism. We know that M is a subfield
of N , so id : M → M ′ is a field isomorphism. From M |⌣

l

PM
PN we get that

PM ′ =M∩PN = PM and PM is an L-substructure of PN , so id|PM
: PM → PM ′

is an L-isomorphism. Lemma I.3.9 implies that id is an Lf -isomorphism.

I.3.3 Saturated models
We will study saturated models of ACFT . Note that κ-saturated models of
ACFT are the same as κ-saturated models of ACFldT or ACFfT , because {ln}n>1

and {fn,i}n>i>0 are definable in ACFT . A full characterization of κ-saturated
models will be given in Proposition I.4.11.

Lemma I.3.11. If M |= ACFT is κ-saturated, then PM is a κ-saturated model
of T .

Proof. Follows from Remark I.3.6, by relativizing each formula in the type we
wish to realize to P .
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For the next result, we will need the following algebraic technical lemma,
whose proof is left as an exercise to the reader.

Fact I.3.12. Suppose F is a field and t is transcendental over F . For every n,
[F (t) : F (tn)] = n.

Lemma I.3.13. If M |= ACFT is κ-saturated, then trdeg(M/PM ) ≥ κ.

Proof. Let S ⊆ M be an algebraically independent set over PM . Suppose
|S| < κ, we want to prove that there is some a ∈ M such that a /∈ PM (S).
Consider the partial type over S

Σ(x) = {∀ȳ ∈ P (q(x, ȳ) = 0 → ∀x′q(x′, ȳ) = 0) | q(x, ȳ) ∈ Q[x, ȳ, S]}

where Q is the prime field (Fp or Q), x is a single variable and ȳ is a tuple of
variables. Let Σn(x) contain all formulas in Σ(x) where the degree of q(x, ȳ) in
x is ≤ n. We will show that a |= Σn(x) iff [PM (S, a) : PM (S)] > n and that
Σn(x) is satisfiable in M . From compactness and saturation (|S| < κ), we will
get that Σ(x) is satisfied by some a ∈M . But then [PM (S, a) : PM (S)] > n for
all n, so a /∈ PM (S).

Suppose a |= Σn(x). If [PM (S, a) : PM (S)] ≤ n, then there is some non-zero
polynomial r(x) ∈ PM (S)[x] of degree ≤ n such that r(a) = 0. The coefficients
of r(x) are rational functions in S over PM . By multiplying by the denominators,
we can assume the coefficients are polynomials in S and PM , so r(x) = q(x, p̄)
for q(x, ȳ) ∈ Q[x, ȳ, S] and p̄ ∈ PM . However, because q(a, p) = r(a) = 0, we
get from a |= Σn(x) that r(x) is constant zero.

Now suppose [PM (S, a) : PM (S)] > n. Let q(x, ȳ) ∈ Q[x, ȳ, S] of degree ≤ n
in x and p̄ ∈ PM , such that q(a, p̄) = 0. The polynomial q(x, p̄) is over PM (S),
has degree ≤ n and has a as root, but [PM (S, a) : PM (S)] > n, so q(x, p̄) must
be constant zero. Hence a |= Σn(x).

To prove that Σn(x) is satisfiable for every n, we need to prove that there
is some a ∈M such that [PM (S, a) : PM (S)] > n. Split into three cases.

1. S = ∅, M 6= PM : Take some a ∈M \ PM and we are done.

2. S = ∅, M = PM : The axioms of ACFT (Definition I.3.1) imply that
[PM : PM ] = ∞. By [Kei64, Lemma 3.1], there exists some a ∈ PM such
that [PM (a) : PM ] > n.

3. S 6= ∅: Take some s0 ∈ S and define F = PM (S \ {s0}). Because M
is algebraically closed, there exists an n + 1-th root a = s

1
n+1

0 ∈ M . We
know that s0 is transcendental over F , so a is also transcendental over F .
Fact I.3.12 implies that [F (a) : F (s0)] = n+1, where F (s0) = PM (S) and
F (a) = PM (S, a), as needed.

Lemma I.3.14. Suppose trdeg(M/PM ) ≥ κ (in particular, if M is κ-saturated)
and let A,A′ ⊆ M be subsets with |A|, |A′| < κ. If f : PM (A) → PM (A′) is an
isomorphism of fields that restricts to an L-automorphism f |PM

, then f can be
extended to an automorphism of M .
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Proof. From transitivity of transcendental degree

trdeg(M/PM ) = trdeg(M/PM (A)) + trdeg(PM (A)/PM ),

and trdeg(PM (A)/PM ) ≤ |A| < κ, so trdeg(M/PM (A)) = trdeg(M/PM ). Simi-
larly, trdeg(M/PM (A′)) = trdeg(M/PM ). Let S, S′ ⊆ M be transcendence ba-
sis of M over PM (A), PM (A′) respectively, |S| = trdeg(M/PM ) = |S′|. Extend
f to an automorphism of fields σ : M → M , by mapping S 7→ S′ and extend-
ing to the algebraic closure arbitrarily. The restriction σ|PM

= f |PM
is an L-

automorphism of P , so Lemma I.3.9 implies that σ is an LP -automorphism.

I.4 Quantifier elimination and more
I.4.1 Completions
Keisler [Kei64] proved that ACFT is complete when T is a complete theory in
the language of rings. We generalize this by allowing the language of T to be
arbitrary.

In his proof, Keisler used special models. We will instead use saturated
models, which simplifies the proof, but requires an additional set-theoretic as-
sumption (namely, the generalized continuum hypothesis). There are standard
techniques from set theory that ensures the generalized continuum hypothesis
from some point on while fixing a fragment of the universe (so this does not
affect questions of e.g., completeness of a given theory), see [HK21a], and we
will use this freely.

Proposition I.4.1. If T is a complete theory of fields, then ACFT is complete.

Proof. It is enough to show that if M,N |= ACFT are saturated models of
the same cardinality κ, then they are isomorphic (see the discussion above the
proposition). By Lemma I.3.11, PM , PN |= T are κ-saturated, and in particular
|PM | = |PN | = κ. Because T is complete, [CK90, Theorem 5.1.13] implies that
there is an L-isomorphism σ0 : PM → PN . By Lemma I.3.13, trdeg(M/PM ) =
trdeg(N/PN ) = κ. Let S ⊆ M , S′ ⊆ N be transcendence basis over PM , PN
respectively, |S| = |S′| = κ. We can extend σ0 to an isomorphism of fields
σ1 : M → N , by mapping S 7→ S′ and extending to the algebraic closure
arbitrarily. The restriction σ1|PM

is an L-isomorphism, so by Lemma I.3.9 σ1
is an LP -isomorphism.

I.4.2 Quantifier elimination
Our proof of quantifier elimination will be essentially the same as Delon’s [Del12,
Proposition 14]. One difference is that the criterion used by Delon to prove
quantifier elimination assumes a countable language, so we will need a slightly
generalized criterion.

In [HKR18], Hils, Kamensky and Rideau proved the same result in a similar
fashion. Our proof was derived independently, as we were not aware of their
work during the research.

Fact I.4.2. A theory T has quantifier elimination iff for any two models M,N |=
T such that N is |M |+-saturated and any substructures A ⊆ M and A′ ⊆ N
with an isomorphism σ : A→ A′, σ can be extended to an embedding M → N .
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Proof. Follows from [Hod93, Theorem 8.4.1].

Theorem I.4.3. If T has quantifier elimination, then ACFfT has quantifier
elimination.

Proof. Let M,N |= ACFfT such that N is |M |+-saturated. Let A ⊆ M ,
A′ ⊆ N be Lf substructures with isomorphism σ : A → A′. By Corol-
lary I.3.8, Frac(A) ⊆ M , Frac(A′) ⊆ N are Lf -substructures with PFrac(A) =
PA, PFrac(A′) = PA′ . We can extend σ to an isomorphism of fields Frac(A) →
Frac(A′) that will have the same restriction PA → PA′ , and so by Lemma I.3.9
would still be an Lf -isomorphism. Thus, we can assume without loss of gen-
erality that A and A′ are subfields. By I.3.11, PN is |M |+-saturated, and in
particular |PM |+-saturated. The restriction σ|PA

: PA → PA′ is an isomorphism
of L-structures from Lemma I.3.9, so quantifier elimination and Fact I.4.2 imply
that we can extend σ|PA

to an embedding σ0 : PM → PN .
Let B = σ0(PM ) ⊆ PN . By Lemma I.3.7, A |⌣

l

PA
PM and A′ |⌣

l

PA′
PN , in

particular by monotonicity A′ |⌣
l

PA′
B. The field isomorphisms σ : A→ A′ and

σ0 : PM → B both restrict to the same isomorphism PA → PA′ , so there is a
unique field isomorphism σ1 : A.PM → A′.B such that σ1|A = σ, σ1|PM

= σ0,
by Corollary I.2.5.

Let S ⊆ M be a transcendental basis of M over A.PM , |S| ≤ |M |. From
Lemma I.3.13 trdeg(N/PN ) ≥ |M |+ and |A′| = |A| ≤ |M |, so there exists S′ ⊆
N algebraically independent over A′.PN with |S| = |S′|. Let M ′ = A′.B(S′) ⊆
N . Quantifier elimination implies that the substructure B ⊆ PN is elementary,
so by Corollary I.2.11 B ⊆ PN is regular. We also know that A′ |⌣

l

PA′
PN ,

so by base monotonicity A′.B |⌣
l

B
PN and by Lemma I.2.9 A′.B(S′) |⌣

l

B
PN ,

where A′.B(S′) = M ′. Thus, M ′ ⊆ N is a substructure, with PM ′ = B, from
Lemma I.3.7.

We also have M = A.PM (S), so we can extend σ1 : APM → A′B to σ2 :
M →M ′ by mapping S 7→ S′ arbitrarily and extending to the algebraic closure.
In particular, σ2(PM ) = B = PM ′ and σ2|PM

= σ0 is an isomorphism of L-
structures, so σ2 is an isomorphism of Lf -structures by Lemma I.3.9. Thus, σ2
is an embedding of M into N that extends σ.

Example I.4.4 ([Del12, Therorem 1]). ACFfACF eliminates quantifiers.

Example I.4.5. ACFfRCF eliminates quantifiers, where RCF is the theory of
real closed fields in the language Lrings ∪ {≤}.

Example I.4.6. Let ACVF be the theory of algebraically closed valued fields in
the divisibility language, that is the language of rings with a binary relation x|y
signifying v(x) < v(y). ACVF eliminates quantifiers, so ACFfACVF eliminates
quantifiers (by Example I.5.35 it is also NIP).

From quantifier elimination, we can deduce a couple of important corollaries.
Both corollaries will rely on expanding a theory T to the Morleyzation, which
has quantifier elimination, as defined below.

Definition I.4.7. For a theory T , the Morleyzation TMor of T is an expansion
of T by relations Rψ(x) for any ψ(x) ∈ L, such that TMor ` ∀x(Rψ(x) ↔ ψ(x)).
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Corollary I.4.8. Every formula ϕ(x) ∈ LP is equivalent modulo ACFT to
a bounded formula, that is a formula where every quantifier is over P (see
Definition I.3.5).

Proof. Consider the Morleyzation TMor and the theory ACFfTMor
which has

quantifier elimination by Theorem I.4.3. In particular, ϕ(x) is equivalent to
a quantifier free formula ϕ0(x) ∈ LfMor modulo ACFfTMor

. Replace all occur-
rences of ln, fn,i in ϕ0(x) with the formulas defining them, to get an equivalent
formula ϕ1(x) ∈ LPMor. The formulas defining ln, fn;i are bounded, so ϕ1(x) is
bounded.

For any formula ψ(y) ∈ L consider the bounded formula ψP (y) ∈ LP cre-
ated from Remark I.3.6. The axioms of ACFTMor

(Definition I.3.1) imply that
ACFTMor

` ∀yRψ(y) ↔ ψP (y). Replace each predicate Rψ(y) in ϕ1(x) by the
corresponding ψP (y), to get a bounded formula ϕ2(x) ∈ LP which is equivalent
to ϕ(x) modulo ACFT .

Remark I.4.9. In that case that L is the language of rings, Corollary I.4.8
follows from [CZ01, Proposition 2.1], because ACF has nfcp and PM is small in
any model M |= ACFT (as witnessed in a saturated extension, by Lemma I.3.13).

Corollary I.4.10. Let M,N |= ACFfT and let A ⊆M , B ⊆ N be substructures.
Then σ : A→ B is a partial elementary map from M to N iff σ : A→ B is an
isomorphism of rings such that σ(PA) = PB and σ|PA

: PA → PB is a partial
elementary map from PM to PN .

Proof. Suppose σ : A → B is a partial elementary map from M to N . Then
σ is in particular an isomorphism, so σ(PA) = PB . The restriction σ|PA

is a
partial elementary map from PM to PN because for every formula ϕ(x) ∈ T ,
we can apply Remark I.3.6 to get ϕP (x̄) ∈ ACFT , such that ϕ(PB) = ϕP (B) =
σ(ϕP (A)) = σ(ϕ(PA)).

For the other direction, suppose σ : A→ B is an isomorphism of rings such
that σ(PA) = PB and σ|PA

: PA → PB is a partial elementary map from PM to
PN . In particular, PM ≡ PN , so we can assume that T is the complete theory
T = Th(PM ) = Th(PN ). Let TMor be the Morleyzation of T , TMor has quantifier
elimination. We can expand the language of PM and PN by definable relations
to get PM , PN |= TMor. With this expanded language M,N |= ACFfTMor

. The
expansion is only relational, so we can still consider A and B as substructure.
The restriction σ|PA

is a partial elementary map in T , so it is an isomorphism
in TMor, and thus by Lemma I.3.9 σ is an isomorphism in ACFfTMor

. By Propo-
sition I.4.1 and Theorem I.4.3 ACFfTMor

is complete and eliminates quantifiers,
so σ is a partial elementary map in ACFfTMor

. In particular, it is a partial
elementary map in ACFfT .

Using this result on elementary maps, we can now show that Lemmas I.3.11
and I.3.13 fully characterize the saturated models of ACFT .

Proposition I.4.11. Suppose κ > |L|, then N |= ACFT is κ-saturated iff
PN |= T is κ-saturated and trdeg(N/PN ) ≥ κ

Proof. The first direction, if N |= ACFT is κ-saturated, then PN |= T is κ-
saturated and trdeg(N/PN ) ≥ κ, is proved in Lemmas I.3.11 and I.3.13. For the
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other direction, we will prove κ-homogeneity and κ+-universality. By expanding
the language with definable relations and functions, we can assume N |= ACFfT .
Let A,B ⊆ N and let σ : A → B be a partial elementary map in N with
σ(A) = B, such that |A| = |B| < κ. Without loss of generality, we can assume
that A,B ⊆ N are Lf -substructures, and by Corollary I.3.8 we can also assume
they are subfields. Corollary I.4.10 implies that σ|PA

: PA → PB is a partial
elementary map in PN . We know that PN is κ-homogeneous and |PA| = |PB | <
κ, so we can extend σ|PA

to an automorphism σ0 : PN → PN in T .
We have A |⌣

l

PA
PN and B |⌣

l

PB
PN from Lemma I.3.7, and the field iso-

morphisms σ and σ0 restrict to the same isomorphism PA → PB , so by Corol-
lary I.2.5 they can be jointly extended to an isomorphism of fields σ1 : A.PN →
B.PN . From Lemma I.3.14, σ1 can be extended to an automorphism of fields
σ2 : N → N . Lemma I.3.9 implies that σ2 is an Lf automorphism because
σ2|PN

= σ0 is an automorphism in T , and σ2 extends σ as needed.
Now Let M |= ACFT with |M | ≤ κ, by expanding the language we can

assume M |= ACFfT . We have PM |= T with |PM | < κ, so by κ+-universality
of PN there exists an elementary embedding τ0 : PM → PN . Let B = τ0(PM ).
We have B ≺ PN , and in particular from Corollary I.2.11 B ⊆ PN is a regu-
lar extension. Let S be a transcendental basis of M over PM , |S| ≤ κ and
trdeg(N/PN ) ≥ κ, so there exists S0 ⊆ N algebraically independent over
PN with |S0| = |S|. We can extend τ0 to an embedding τ1 : M → N
by mapping S 7→ S0 arbitrarily and extending to the algebraic closure. Let
M0 = τ1(M) = B(S0). From Lemma I.2.9, B(S0) |⌣

l

B
PN , so by Lemma I.3.10

M0 ⊆ N is an Lf -substructure with PM0
= B. We have that τ1 :M →M0 is an

isomorphism of fields with τ1|PM
= τ0 : PM → PM0 an elementary embedding,

so by Corollary I.4.10 τ1 is an elementary embedding.

I.4.3 Model completeness
In [Del12, Corollary 15], Delon proved that ACFldACF is model complete. We can
show that if T is model complete, then ACFldT is model complete, but in fact we
only need a weaker condition — that regular extensions in T are elementary.

Theorem I.4.12. The following are equivalent:

1. ACFfT is model complete.

2. ACFldT is model complete.

3. For any Q,R |= T such that Q ⊆ R is a substructure, if Q ⊆ R is a regular
extension, then Q ≺ R.

4. Treg (Definition I.2.12) is model complete.

Proof. 1 =⇒ 2: Let M,N |= ACFldT with M ⊆ N an Lld-substructure. We
can expand M and N uniquely to models of ACFfT , by Lemma I.3.10 M ⊆ N

is an Lf -substructure. ACFfT is model complete, so M ≺ N in Lf , in particular
M ≺ N in Lld.

2 =⇒ 3: Let Q,R |= T with Q ⊆ R a regular extension. We will construct
M,N |= ACFldT such that PM = Q, PN = R and M ⊆ N . We would have
liked to take M = Q, but then we may have [M : Q] < ∞, so we should
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make M a bit larger. Let s be a new element, transcendental over R. The
subfield Q ⊆ R is regular, so by Lemma I.2.9 Q(s) |⌣

l

Q
R. Define M = Q(s),

Q ⊆ M is not an algebraic extension so in particular [M : Q] = ∞. We have
M |= ACFldT , where we define PM = Q. Similarly, define N = R(s), N |= ACFldT
with PN = R. We know that PM ⊆ PN is an L-substructure and M |⌣

l

PM
PN ,

so by Lemma I.3.10 M ⊆ N is an Lld-substructure. Model completeness implies
M ≺ N , and in particular PM ≺ PN , because for every formula ϕ(x̄) ∈ L we
have PM |= ϕ(ā) ⇐⇒ M |= ϕP (ā) ⇐⇒ N |= ϕP (ā) ⇐⇒ PN |= ϕ(ā) for
every ā ∈ PM , where ϕP is given by Remark I.3.6.

3 =⇒ 1: Let M,N |= ACFfT and suppose M ⊆ N is a substructure.
Lemma I.3.10 implies that PM ⊆ PN is an L-substructure and M |⌣

l

PM
PN .

However, M is algebraically closed, so by monotonicity PM |⌣
l

PM
PN , that is

PM ⊆ PN is a regular extension. By the assumption, PM ≺ PN . The inclu-
sion map M → N restricts to the elementary inclusion PM → PN , so from
Corollary I.4.10 M ≺ N .

3 ⇐⇒ 4: Let Q,R |= T be such that Q ⊆ R is an L-extension. By
Lemma I.2.13, Q ⊆ R is a regular field extension iff it is an Lreg-extension. In
particular, regular extensions are elementary iff Treg is model complete.

Example I.4.13 ([Del12, Corollary 15]). ACFldACF is model complete.
Example I.4.14. ACFldPSF is model complete, where PSF is the theory of
pseudo-finite fields in the language of rings (see Proposition I.6.9).
Example I.4.15. ACFACF is not model complete. By [TZ12, page 207], the
pregeometry of an algebraically closed field K of transcendence degree at least
4 over its prime field with algebraic independence is not modular: there are
algebraically closed subfields A,B ⊆ K such that A 6 |⌣

ACF

A∩B B. Define

M = A N = K

PM = A ∩B PN = B.

It is clear that M ⊆ N is an LP -substructure, however if M ≺ N , then
Lemma I.3.10 would imply that A |⌣

l

A∩B B, and in particular A |⌣
ACF

A∩B B, a
contradiction.

I.5 Classification and independence
In this section we will assume that T is complete (Proposition I.4.1 implies that
ACFT is also complete) and we will work inside a monster model M |= ACFT .
Denote P := PM.

Assuming T is NSOP1, we will define an independence relation |⌣
∗ on M and

prove that it implies Kim-dividing (in fact, Kimu dividing, see Definition I.2.17)
With this result, we will prove that ACFT is NSOP1 and that under certain
conditions |⌣

∗ is the Kim-independence. We will then expand this result to
simplicity and stability.

We will also prove that stability lifts from T to ACFT using a different
approach, by counting types. This approach will let us extend the result to
λ-stability.

Finally, we will prove that NIP lifts from T to ACFT ,
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I.5.1 Kim-dividing
Definition I.5.1. Call a subfield A ⊆ M D-closed (D for Delon’s language) if it
is closed under the functions fn,i, or equivalently if A |⌣

l

PA
P . For a set B ⊆ M,

denote by 〈B〉D the D-closure of B, that is the smallest field containing B and
closed under fn,i.

Remark I.5.2. We have the following remarks on D-closure:

• In [MPZ20, Definition 3.1], the condition D-closed was called P -special.

• If A ⊆ M is definably closed in LP , then it is D-closed. In particular, for
every A ⊆ M, dcl(A) and acl(A) are D-closed.

• D-closure gives a shorter proof of local character of |⌣
l (see Fact I.2.4).

Suppose a is finite and B is an infinite field and consider the structure
(B(a), B) (the field B(a) with a predicate for B). Define B0 = 〈a〉D ∩B,
which is countable. We have B0(a) = 〈a〉D, so B0(a) |⌣

l

B0
B.

Lemma I.5.3. Suppose A,B,C ⊆ M are subfields with C ⊆ A ∩B. If A is D-
closed, then A.P |⌣

l

C.P
B.P iff A |⌣

l

C.PA
B.P . By symmetry, if B is D-closed,

then A.P |⌣
l

C.P
B.P iff A.P |⌣

l

C.PB
B. Furthermore, if both A and B are D-

closed, then A.P |⌣
l

C.P
B.P implies A.B |⌣

l

PA.PB
P , i.e. PA.B = PA.PB and

A.B is D-closed.

Proof. If A |⌣
l

C.PA
B.P , then A.P |⌣

l

C.P
B.P from base monotonicity. On the

other hand, if A.P |⌣
l

C.P
B.P , then because A |⌣

l

PA
P implies A |⌣

l

C.PA
C.P

from base monotonicity, we get from transitivity that A |⌣
l

C.PA
B.P . For the

furthermore part, we know fromA |⌣
l

PA
P andA.P |⌣

l

C.P
B.P thatA |⌣

l

C.PA
B.P .

By base monotonicity, A.B |⌣
l

B.PA
B.P . Also, from B |⌣

l

PB
P and base mono-

tonicity, B.PA |⌣
l

PA.PB
P , thus by transitivity A.B |⌣

l

PA.PB
P .

Definition I.5.4. Let M ≺ M and A,B ⊆ M be small D-closed subfields, such
that M ⊆ A ∩B. Define A |⌣

∗
M
B if

1. PA |⌣
K

PM
PB in P .

2. A.P |⌣
l

M.P
B.P .

Lemma I.5.5. Let A,B,C ⊆ M be small subsets with C ⊆ A∩B. If A |⌣
u

C
B,

then:

1. PA |⌣
u

PC
PB in P .

2. If A, B and C are subfields and B is D-closed, then A.P |⌣
l

C.P
B.P .

In particular, if M ≺ M and A and B are D-closed with M ⊆ A ∩ B, then
A |⌣

u

M
B implies A |⌣

∗
M
B.
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Proof. For point (1), suppose P |= ϕ(a, b) for some formula ϕ(x, y) ∈ L, a ∈ PA
and b ∈ PB . Let ϕP (x, y) ∈ LP be as in Remark I.3.6, we have M |= ϕP (a, b).
By A |⌣

u

C
B there is some c ∈ C such that M |= ϕP (c, b). Thus, c ∈ P ∩C = PC ,

and we have P |= ϕ(c, b).
For point (2), it is enough to prove A.P |⌣

l

C.PB
B by Lemma I.5.3. Let∑

i uibi = 0 for ui ∈ A.P , bi ∈ B such that the ui are not all trivial (not all
equal to 0). We can write ui = fi(āi, p̄i) for fi ∈ C(x̄i, ȳi) a rational function,
āi ∈ A, p̄i ∈ P . Thus, we have |=

∑
i fi(āi, p̄i)bi = 0 ∧

∨
i fi(āi, p̄i) 6= 0, and in

particular |= ∃ȳi ∈ P,
∑
i fi(āi, ȳi)bi = 0∧

∨
i fi(āi, ȳi) 6= 0. FromA |⌣

u

C
B, there

are c̄i ∈ C such that |= ∃ȳi ∈ P
∑
i fi(c̄i, ȳi)bi = 0∧

∨
i fi(c̄i, ȳi) 6= 0. Let q̄i ∈ P

witness the existence, and let vi = fi(c̄i, q̄i) ∈ C.P . We have
∑
i vibi = 0 and vi

are not all trivial. Moreover, B |⌣
l

PB
P , so by base monotonicity B |⌣

l

C.PB
C.P ,

thus there are wi ∈ C.PB , not all trivial, such that
∑
i wibi = 0, as needed.

The “in particular” part follows from the definition of |⌣
∗, because PA |⌣

u

PM
PB

implies PA |⌣
K

PM
PB (see [dE21a, Fact 3.10]).

Lemma I.5.6. Let A,B,C ⊆ M be small subsets with C ⊆ A ∩ B and let
(Bi)i<ω be a C-indiscernible coheir sequence such that B ≡A Bi, then (PBi

)i<ω
is a PC-indiscernible coheir sequence such that PB ≡PA

PBi
in P .

Proof. For every formula in P , we can restrict all quantifiers and free variables
to be over P to get a formula in M with the same definable set. This proves
that (PBi)i<ω is PC-indiscernible and PB ≡PA

PBi in P . From Lemma I.5.5,
PBi

|⌣
u

PC
PB<i

in P , and PB<i
=

⋃
j<i PBj

, so (PBi
)i<ω is a PC-indiscernible

coheir sequence.

Proposition I.5.7. Assume T is NSOP1. Let M ≺ M and let A,B ⊆ M be
small D-closed subfields with M ⊆ A ∩ B, such that A is algebraically closed
as a field. If A |⌣

∗
M
B, then tp(A/B) does not Kimu-divide over M (recall

Definition I.2.17).

Proof. Let (Bi)i<ω be any M -indiscernible coheir sequence such that B ≡M Bi
for every i < ω and let βi : B → Bi be LP -isomorphisms matching the tuples.
By Lemma I.5.6, (PBi

)i<ω is a PM -indiscernible coheir sequence. Because T
is NSOP1 and PA |⌣

K

PM
PB , Fact I.2.20(2) implies that there exists Q ⊆ P

such that PAPB ≡PM
QPBi in P for all i < ω. This means that there are

automorphisms γi of P mapping PAPB to QPBi
and preserving PM pointwise,

such that the restriction γi|PA
: PA → Q is the same for every i < ω, call it

α0 : PA → Q.
Let S ⊆ A be a transcendence basis of A over M.PA. By Lemma I.3.13,

trdeg(M/P ) = |M|, so there exists some S′ algebraically independent overB<ωP
with |S′| = |S|. Define A′ = M.Q(S′). From Lemma I.3.7, M |⌣

l

PM
P , so from

monotonicity M |⌣
l

PM
PA and M |⌣

l

PM
Q. Thus, from stationarity of |⌣

l, we
can extend α0 : PA → Q to an isomorphism of fields M.PA → M.Q preserving
M pointwise. Map S 7→ S′ arbitrarily and extend arbitrarily to the algebraic
closure, to get an isomorphism of fields α : A → A′. This give us a way to
consider A′ as a tuple.

Let i < ω. We know that B |⌣
l

PB
P and Bi |⌣

l

PBi

P , the field isomorphisms
βi : B → Bi and γi : P → P both restrict to the same isomorphism PB →
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PBi
, so from Corollary I.2.5 they can be jointly extended to an isomorphism of

fields σi,0 : B.P → Bi.P . From A.P |⌣
l

M.P
B.P and Lemma I.5.3 we get that

A |⌣
l

M.PA
B.P . We would like to prove that also A′ |⌣

l

M.Q
Bi.P . We know that

A is algebraically closed, so M.PA ⊆ B.P is regular. Applying Lemma I.2.8 with
σi,0, we get that M.Q ⊆ Bi.P is regular. The set S′ is algebraically independent
over Bi.P , so from Lemma I.2.9 M.Q(S′) |⌣

l

M.Q
Bi.P , where M.Q(S′) = A′.

The isomorphisms of fields α : A → A′ and σi,0 : B.P → Bi.P restrict to
the same isomorphism M.PA → M.Q, which acts as α0 on PA and preserves
M pointwise. Thus, from Corollary I.2.5, they can be jointly extended to an
isomorphism of fields σi,1 : A.B.P → A′.Bi.P . By Lemma I.3.14, σi,1 can
be extended to σi,2 an LP -automorphism of M. The automorphism σi,2 maps
AB 7→ A′Bi and preserves M pointwise, so AB ≡M A′Bi. This is compatible
with the way we defined A′ as a tuple, because σi,2|A = α.

I.5.2 NSOP1, simplicity
Remark I.5.8. In a general theory T , if A |⌣

u

C
B, then acl(AC) |⌣

u

acl(C)
acl(BC).

Indeed, by extension, for some A′ ≡BC A we have A′ |⌣
u

C
acl(BC), and by apply-

ing an automorphism taking A′ to A and fixing BC we get that A |⌣
u

C
acl(BC).

By base monotonicity, A |⌣
u

acl(C)
acl(BC).

Suppose that |= ϕ(d, b) where ϕ(x, y) is a formula over acl(C), d ∈ acl(AC)
and b ∈ acl(BC). Let ψ(x, z) be a formula over C and a ∈ A be such that
ψ(x, a) is algebraic, say of size n, and |= ψ(d, a). By the first part there exist
c ∈ acl(C) such that ψ(x, c) is of size n and |= ∃x(ϕ(x, b) ∧ ψ(x, c)), let e
witness the existence. The fact that |= ψ(e, c) implies that e ∈ acl(C), and we
have |= ϕ(e, b), so acl(AC) |⌣

u

acl(C)
acl(BC).

Theorem I.5.9. If T is NSOP1, then ACFT is NSOP1.

Proof. We will use Fact I.2.16. Let M ≺ M and suppose A0, A1, B0 and B1

are such that A0B0 ≡M A1B1, B1 |⌣
u

M
B0 and Bi |⌣

u

M
Ai for i = 0, 1. By

Remark I.5.8, we can assume that Ai = acl(AiM), Bi = acl(BiM), and in
particular they are all D-closed and algebraically closed.

From B0 |⌣
u

M
A0, we get using Lemma I.5.5 that B0 |⌣

∗
M
A0. However, T is

NSOP1, so Fact I.2.20(3) implies that |⌣
K in P is symmetric, thus |⌣

∗ is also
symmetric and we have A0 |⌣

∗
M
B0. By Proposition I.5.7, tp(A0/B0) does not

Kimu-divide over M . Extend the pair (B0, B1) to a coheir sequence (Bi)i<ω (to
do that, first extend tp(B1/MB0) to a global type which is finitely satisfiable in
M , and then generate a Morley sequence in that type; see [KR20, §3.1]). By the
definition of Kimu-dividing (Definition I.2.17) we get that there exists A ⊆ M
such that A0B0 ≡M AB0 ≡M AB1.

Example I.5.10. The theory of ω-free PAC fields was shown to be non-simple
by Chatzidakis [Cha99], as it is PAC and unbounded, and NSOP1 by Chernikov
and Ramsey [CR16]. Thus, ACFω-free PAC is NSOP1 and non-simple as the
theory of ω-free PAC fields is interpretable in ACFω-free PAC.

Now we will show that in NSOP1 theories, Kim-independence is |⌣
∗ for

certain sets.
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Proposition I.5.11. Assume T is NSOP1. Let M ≺ M and let A,B ⊆ M be
small D-closed subfields with M ⊆ A ∩ B. Then A |⌣

K

M
B implies A |⌣

∗
M
B.

If either A or B are algebraically closed as fields, then also A |⌣
∗
M
B implies

A |⌣
K

M
B.

Proof. The theory T is NSOP1, so ACFT is also NSOP1 from Theorem I.5.9.
Suppose A |⌣

K

M
B, we need to prove that PA |⌣

K

PM
PB in P and A.P |⌣

l

M.P
B.P .

There exists an M -indiscernible coheir sequence (Bi)i<ω, with B ≡A Bi. From
Lemma I.5.6, (PBi

)i<ω is a PM indiscernible coheir sequence with PB ≡PA
PBi

in P . Because T is NSOP1, Fact I.2.20(1) implies that PA |⌣
K

PM
PB .

To prove that A.P |⌣
l

M.P
B.P , it is enough to prove that A |⌣

l

M.PA
B.P , by

Lemma I.5.3. Let a ∈ A be a finite tuple and suppose it is linearly dependent
over B.P . Because A |⌣

K

M
B, we can construct an uncountable M -indiscernible

coheir sequence (Bi)i<ω1 , with B ≡A Bi. Let σi ∈ Aut(M/A) be an automor-
phism mapping B to Bi. We know that σi preserves P setwise, so by applying σi
we get that a is linearly dependent over Bi.P . By local character, there is some
countable subfield C ⊆ acl(B<ω1

).P such that C(a) |⌣
l

C
acl(B<ω1

).P . Because
C is countable, there is some i < ω1 such that C ⊆ acl(B<i).P . By Remark I.5.8
we have Bi |⌣

u

M
acl(B<i), so Lemma I.5.5 implies that Bi.P |⌣

l

M.P
acl(B<i).P ,

and in particular from monotonicity Bi.P |⌣
l

M.P
M.P.C. However, the fact that

C(a) |⌣
l

C
acl(B<ω1).P also implies, using monotonicity, base monotonicity and

symmetry, thatBi.P.C |⌣
l

M.P.C
M.P.C(a), so by transitivityBi.P |⌣

l

M.P
M.P.C(a).

The tuple a is linearly dependent overBi.P , so it is linearly dependent overM.P .
However, A is D-closed so A |⌣

l

PA
P and by base monotonicity A |⌣

l

M.PA
M.P .

Thus, a is linearly dependent over M.PA, as needed.
IfA is algebraically closed andA |⌣

∗
M
B, then from Proposition I.5.7 tp(A/B)

does not Kimu-divide over M . ACFT is NSOP1, so by Remark I.2.18 Kimu-
dividing is the same as Kim-dividing, and by Fact I.2.20(2) Kim-dividing is the
same as Kim-forking, thus A |⌣

K

M
B. The case where B is algebraically closed

follows from symmetry of |⌣
∗ and |⌣

K (Fact I.2.20(3)).

Remark I.5.12. The proof of Proposition I.5.11 was inspired by the proof of
[BYPV03, Proposition 7.3]

Theorem I.5.13. If T is simple, then ACFT is simple.

Proof. Suppose T is simple, in particular T is NSOP1 so Theorem I.5.9 implies
that ACFT is NSOP1. By Fact I.2.20(5), for an NSOP1 theory being simple
is equivalent to Kim-independence having base monotonicity. Let A,B ⊆ M
be small subsets and M,N ≺ M submodels, such that M ⊆ A, M ⊆ N ⊆ B.
Suppose A |⌣

K

M
B, we want to prove A |⌣

K

N
B. Without loss of generality we

can assume that A and B are acl-closed.
By Proposition I.5.11, A |⌣

K

M
B implies A |⌣

∗
M
B. We have A.P |⌣

l

M.P
B.P ,

and by monotonicity A.P |⌣
l

M.P
N.P , so from Lemma I.5.3 N.A is D-closed.

Since B is D-closed and algebraically closed as a field, by Proposition I.5.11
it is enough to prove N.A |⌣

∗
N
B. By base monotonicity of linear disjointness,

A.P |⌣
l

M.P
B.P impliesN.A.P |⌣

l

N.P
B.P . We know that T is simple, so by base
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monotonicity of Kim-independence in P , PA |⌣
K

PM
PB implies PN .PA |⌣

K

PN
PB .

Example I.5.14. ACFPSF is simple, where PSF is the theory of pseudo-finite
fields (see Proposition I.6.10 for an alternative proof).

I.5.3 Stability
There are a few ways to prove that if T is stable, then ACFT is stable. The
first option, continuing in the path of the previous results, is using a Kim-Pillay
style characterization on non-forking independence, which in simple theories is
the same as Kim-independence over models.

The second option is a more direct approach, by counting types. The second
option will give us a stronger result, that if T is λ-stable, then so is ACFT ,
which will let us extend to super-stability and ω-stability. Even though the
second option is strictly stronger than the first, we will also show the first, to
complete the picture on Kim-independence.

A third way to prove stability, is by proving the existence of saturated mod-
els of certain cardinalities. This could be done using the characterization of
saturated models of ACFT found in Proposition I.4.11, but we will not expand
on it here.

Remark I.5.15. When the predicate has no extra structure, stability can also
be deduced from [CZ01, Corollary 5.4] (which cites [Pil98], probably meaning
Proposition 3.1 there), which is a much more general statement: if M is strongly
minimal and A is some subset of M such that the induced structure on A is stable,
then (M,A) is stable.

Theorem I.5.16. If T is stable, then ACFT is stable.

Proof. Suppose T is stable, in particular T is simple so Theorem I.5.13 implies
that ACFT is simple. [KR20, Proposition 8.4] says that in simple theories, non-
forking independence over models is the same as Kim-independence. To show
that ACFT is stable, it is enough to show that non-forking independence has
stationarity over models ([Cas11, Theorem 12.22]). Let A, A′ and B be small
subsets such that M ⊆ A∩A′ ∩B. Suppose A |⌣

K

M
B, A′ |⌣

K

M
B and A ≡M A′.

Without loss of generality we can assume A, A′ and B are acl-closed.
We have PA ≡PM

PA′ , and by Proposition I.5.11 PA |⌣
K

PM
PB and PA′ |⌣

K

PM
PB

in P . We know that T is stable, so by stationarity PA ≡PB
PA′ . Let σ0 be an

automorphism of P mapping PA to PA′ and preserving PB pointwise. We have
B |⌣

l

PB
P , so by stationarity of linear disjointedness we can extend σ0 to σ1 :

B.P → B.P preserving B pointwise. By Proposition I.5.11 and Lemma I.5.3,
A |⌣

l

M.PA
B.P and A′ |⌣

l

M.PA′
B.P , so by Corollary I.2.5 we can extend σ1 to

σ2 : A.B.P → A′.B.P , mapping A to A′. Extend σ2 to σ3, an automorphism of
M, using Lemma I.3.14. The automorphism σ3 maps A to A′ and preserves B
pointwise, so A ≡B A′.

Example I.5.17. ACFSCF is stable, where SCF is the theory of separably
closed fields.

To prove stability by counting types, we will need to show that P is stably
embedded in M.
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Definition I.5.18. A set Q ⊆ Mm which is definable over the empty set is
called stably embedded if for every n, if D ⊆ Mmn is definable, then D ∩Qn is
definable with parameters from Q.

Fact I.5.19 ([Cha99, Appendix, Lemma 1]). For Q ⊆ M as above, if every
automorphism of the induced structure on Q lifts to an automorphism of M,
then Q is stably embedded.

Remark I.5.20. The precise formulation of the above fact is more general but
requires extra assumptions on T , namely that T = T eq and that the language is
countable. However, those assumptions are not used in the proof of the direction
we cited.

Lemma I.5.21. The induced structure on P as a subset of M is the same (up
to inter-definability) as the intrinsic L-structure of P .

Proof. If A ⊆ Pn is definable in P by a formula ϕ ∈ L, then we can construct
by Remark I.3.6 a formula ϕP ∈ LP that defines A in M.

In the other direction, if A ⊆ Pn is definable in M by a formula ψ ∈ LP , then
we can assume by Corollary I.4.8 that ψ is bounded. Remove any occurrence
of P in ψ, by replacing x ∈ P with a tautology (x = x), to get a formula in L
that defines A in P .

Proposition I.5.22. P is stably embedded in M.

Proof. Follows from Fact I.5.19 and Lemmas I.3.14 and I.5.21.

Remark I.5.23. It follows from a simple compactness argument that P is even
uniformly stably embedded, that is, for any formula ϕ(x, y) there exists a formula
ψ(x, z) such that for every b ∈ M there is c ∈ P with ϕ(P, b) = ψ(P, c).

Theorem I.5.24. If T is λ-stable, then ACFT is λ-stable.

Proof. Suppose T is λ-stable, we can assume that |T | ≤ λ by replacing T up
to inter-definability (see e.g. [TZ12, Exercise 5.2.6]). Let C ⊆ M be a subset
with |C| ≤ λ, we need to prove that |SACFT

1 (C)| ≤ λ, where SACFT
1 (C) is the

space of types in one variable over C. First we will prove that all elements
in M \ P (C) have the same type over C. Suppose a0, a1 ∈ M \ P (C), that is
both a0 and a1 are transcendental over P (C). There is an isomorphism of fields
P (C, a0) → P (C, a1) given by fixing P (C) pointwise and mapping a0 7→ a1. By
Lemma I.3.14, we can extend this map to an automorphism of M, so a0 ≡C a1.

It remains to show that there are at most λ types in P (C). Any element of
P (C) solves some non-zero polynomial of the form q(x; b, c) with b ∈ Pn and
c ∈ Cm, and in particular satisfies

ϕ(x; c) = ∃y ∈ P (q(x; y, c) = 0 ∧ ∃x′q(x′; y, c) 6= 0).

Thus, any type in P (C) contains some formula ϕ(x; c) as above. There are at
most λ formulas in LP with parameters from C, so it is enough to prove that
there are at most λ types that contain any given formula ϕ(x; c) as above.

First of all, P is stably embedded in M (Proposition I.5.22), so every C-
definable subset of Pn is also definable in ACFT with parameters from P . Let
D ⊆ P be the set of all the parameters needed to define every C-definable subset
of Pn. There are at most λ definable subsets of Pn over C, so |D| ≤ λ.
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Let [ϕ] ⊆ SACFT
1 (C) be the set of types implying ϕ(x; c). We will construct

a map ρ : [ϕ] → STn (D) such that ρ has finite fibers. Because T is λ-stable,
|STn (D)| ≤ λ, so this will imply |[ϕ]| ≤ λ as needed.

For any type p(x) ∈ [ϕ], choose some realization a |= p. In particular,
|= ϕ(a; c), so we can choose some b ∈ Pn such that q(x; b, c) is non-zero and
q(a; b, c) = 0. Define ρ(p) = tpT (b/D). Suppose p0, p1 ∈ [ϕ] and ρ(p0) = ρ(p1),
that is, if ai, bi are the specific elements we chose for pi (i = 0, 1), then b0 ≡TD b1.
There is an automorphism of P over D mapping b0 7→ b1, which can be extended
by Lemma I.3.14 to an automorphism of M over D, so b0 ≡ACFT

D b1. We want
to prove that b0 ≡ACFT

C b1. Suppose b0 belongs to some C-definable set, we can
assume that it is a subset of Pn because b0 ∈ Pn. By the construction of D,
this C-definable subset of Pn is also D-definable in ACFT , so b1 belongs to it
as b0 ≡ACFT

D b1.
Let σ ∈ Aut(M/C) be an automorphism mapping b0 to b1. We have

q(σ(a0); b1, c) = 0, thus a0 has the same type over C as a root of q(x; b1, c),
specifically σ(a0). It follows that every type in the fiber of ρ(p1) is a type over
C of a root of q(x; b1, c), however q(x; b1, c) is non-zero, so it has only finitely
many roots. Thus, ρ has finite fibers.

We can apply Theorem I.5.24 on a specific λ to give another proof of Theo-
rem I.5.16. We also get the following corollaries:

Corollary I.5.25. If T is superstable, then ACFT is superstable.

Corollary I.5.26. If T is ω-stable, then ACFT is ω-stable.

Example I.5.27. ACFACF is ω-stable, see Proposition I.6.2 for an extended
application of this result.

Remark I.5.28. Per the definition in [Poi83], ACFACF is a belle pair, so it
is stable. In [BYPV03], the notion of belle pairs was expanded to lovely pairs
and a description of non-forking independence was given. When considering
pairs of ACF, the description of non-forking independence in Proposition I.5.11
is slightly different from the description given in [BYPV03, Proposition 7.3] —
instead of the condition A.P |⌣

l

M.P
B.P they have A.P |⌣

ACF

M.P
B.P . However,

in this case the conditions are equivalent, as can be seen in [MPZ20, Corollary
6.2].

I.5.4 NIP
We will prove that if T is NIP, then ACFT is NIP. First we will define the
notions of a NIP formula, type and theory, and present some basic facts based
on [Sim15] and [KS14].

Definition I.5.29. A formula ϕ(x, y) has the independence property (IP) if
there is a sequence (ai)i<ω such that for every s ⊆ ω the set {ϕ(ai, y) | i ∈ s} ∪
{¬ϕ(ai, y) | i /∈ s} is consistent.

A partial type π(x) has IP if there is a formula ϕ(x, y) and a sequence (ai)i<ω
of realizations ai |= π(x) such that for every s ⊆ ω the set {ϕ(ai, y) | i ∈ s} ∪
{¬ϕ(ai, y) | i /∈ s} is consistent. Otherwise, π(x) is NIP.

A theory T has IP if some formula has IP modulo T , or equivalently the
type x = x has IP. Otherwise, T is NIP.
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Fact I.5.30 ([Sim15, Lemma 2.7]). A formula ϕ(x, y) has IP iff there is an
indiscernible sequence (ai)i<ω and a tuple b such that |= ϕ(ai, b) ⇐⇒ i is even.

Fact I.5.31 ([Sim15, Proposition 2.11]). A theory T is NIP iff no formula
ϕ(x, y) with |y| = 1 has IP modulo T .

Fact I.5.32 ([KS14, Proposition 2.6]). Suppose π(x) is a partial NIP type
over A and B is a set of realizations of π(x). If I = (ai)i<|T |++|B|+ is an
A-indiscernible sequence, then some end segment of I is indiscernible over AB.

First we need to show that P is NIP per Definition I.5.29

Lemma I.5.33. If T is NIP, then P is NIP, i.e. the partial type x ∈ P is NIP.

Proof. Suppose x ∈ P has IP. Then there are a sequence (ai)i<ω with ai ∈ P
and a formula ϕ(x, y), such that for every s ⊆ ω, there exists bs ∈ M such that
M |= ϕ(ai, bs) ⇐⇒ i ∈ s. By Remark I.5.23, P is uniformly stably embedded in
M, so there exists a formula ψ(x, z) ∈ LP and parameters cs ∈ P for every s ⊆ ω,
such that ϕ(P, bs) = ψ(P, cs), and in particular M |= ψ(ai, cs) ⇐⇒ i ∈ s.

The induced structure on P is inter-definable with the internal L-structure
of P (Lemma I.5.21), so there is some formula ψ′(x, z) ∈ L that defines the
same set in P as ψ(x, z), in particular P |= ψ′(ai, cs) ⇐⇒ i ∈ s. The formula
ψ′(x, y) has IP in P |= T , in contradiction to T being NIP.

Theorem I.5.34. If T is NIP, then ACFT is NIP.

Proof. Suppose ACFT has IP, by Fact I.5.31 there is some ϕ(x, y) with |y| = 1
that has IP modulo ACFT . Using Fact I.5.30 and compactness, there is an
indiscernible sequence I = (ai)i<|T |+ ⊆ M and some c ∈ M such that M |=
ϕ(ai, c) ⇐⇒ i is even.

First consider the case where c is transcendental over P (I). One can find,
using Ramsey (see e.g. [TZ12, Lemma 5.1.3]), a sequence I ′ indexed by |T |+
that is indiscernible over c with the same EM-type as I over c — that is, if
a formula ϕ(x̄; c) holds for every increasing tuple in I, then it holds for every
increasing tuple in I ′ (see [TZ12, Definition 5.1.2]). In particular, c is still
transcendental over P (I ′). Both I and I ′ are indiscernible and have the same
EM-type over the empty set, so there is an automorphism mapping I ′ 7→ I. If
we apply this automorphism on c, then we get c′ transcendental over P (I) such
that I is indiscernible over c′. By Lemma I.3.14, there is an automorphism fixing
P (I) pointwise and mapping c′ 7→ c, so I is indiscernible over c, a contradiction.

Now consider the case where c is algebraic over P (I). There is some finite
subsequence I0 ⊆ I and some finite tuple b ∈ P , such that c is algebraic over I0b.
Let I ′ ⊆ I be some end segment starting after I0; note that I ′ is indiscernible
over I0. As P is NIP (Lemma I.5.33), by Fact I.5.32 there is an end segment
I ′′ ⊆ I ′ that is indiscernible over I0b. It follows that I ′′ is also indiscernible over
acl(I0b), and in particular over c, a contradiction.

Example I.5.35. Let ACVF be the theory of algebraically closed valued fields
in the divisibility language, that is the language of rings with a binary relation
x|y signifying v(x) < v(y). ACVF is NIP, so ACFACVF is NIP.

Remark I.5.36. One could also use a counting type approach to prove preserva-
tion of NIP, similar to the proof of Theorem I.5.24. This would require working
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in a generic extension of ZFC such that ded(κ)ℵ0 < 2κ for some infinite cardinal
κ (where ded(κ) is the supremum of cardinalities of linear orders with a dense
subset of size ≤ κ). For an expanded explanation of this approach, see [She90,
Theorem II.4.10] and [Adl07, Corollary 24].

Alternatively, one could also apply more general results, i.e., [CS15, Corol-
lary 2.5] and [JS20, Proposition 2.5], but we chose to give a direct argument.

I.6 Applications
In this section we will apply the above results to specific theories.

I.6.1 Tuples of algebraically closed fields
In this section we will consider (perhaps infinite) chains of algebraically closed
fields, which, for the finite case, is a particular case of beaux uples in the sense
of [BP88]. The main result of this section is Proposition I.6.4 which classifies
the theories of such chains based on the order type of the chain.

Definition I.6.1. For any ordered set I, define LI = Lrings ∪ {Pi}i∈I with Pi
unitary predicates and define the theory ACFI expanding ACF in LI , such that:

1. Each Pi is an algebraically closed field, that is strictly contained in the
model.

2. For i < j, Pi ⊊ Pj .

In particular, ACFn is the theory of algebraically closed fields M , with n alge-
braically closed subfields P0 ⊊ P1 ⊊ · · · ⊊ Pn−1 ⊊M .

Proposition I.6.2. Let I be any ordered set.

1. The completions of ACFI are given by fixing the characteristic, ACFIp.

2. Every completion of ACFI is stable.

Proof. We will first prove for I = n, by induction on n. For n = 0, ACF0 =
ACF, and indeed the completions of ACF are given by fixing the characteris-
tic and every completion ACFp is stable. Suppose it is true for n. We have
ACFn+1 = ACFACFn , where we denote the added predicate by Pn. By Proposi-
tion I.4.1, the completions of ACFn+1 are given by completions of ACFn, which
are given by fixing the characteristic. Furthermore, ACFn+1

p = ACFACFn
p
, so

by Theorem I.5.16 every completion ACFn+1
p is stable.

Now consider a general ordered set I and fix a characteristic ACFIp. Let ϕ
be a sentence in LI and let Iϕ ⊂ I be the subset of indexes i ∈ I such that Pi
appears in ϕ. Iϕ is finite, suppose Iϕ = {i0 < · · · < in−1}. ACFnp is complete,
so by renaming the predicates P0, . . . , Pn−1 to Pi0 , . . . , Pin−1

we get that ACFIϕp
is complete. Thus, ACFIϕp ` ϕ or ACFIϕp ` ¬ϕ, but ACFIϕp is a restriction
of ACFIp, so ACFIp ` ϕ or ACFIp ` ¬ϕ. The completions ACFIp are all the
completions of ACFI , because any completion has to fix a characteristic so it
must extend some ACFIp.
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We need to show that every completion ACFIp is stable. If ϕ ∈ LI was
a formula witnessing instability in ACFIp, then it would witness instability in
ACFIϕp , which would imply that ACFnp is unstable for n = |Iϕ|.

We will further classify the stability of ACFIp (when is it ω-stable, superstable
or totally transcendental) based on the order type of I. In the case that I is an
ordinal, we will need the following lemma.

Lemma I.6.3. Let α be an ordinal and M |= ACFα. Any Lβ-automorphism of
Pβ for β < α can be extended to an Lα-automorphism of M.

Proof. Let σβ be an automorphism of Pβ , we will construct by transfinite in-
duction on β ≤ γ < α automorphisms σγ of Pγ , such that if β ≤ γ′ < γ < α,
then σγ extends σγ′ .

Let β ≤ γ < α and suppose we constructed σγ′ for β ≤ γ′ < γ. Let σ<γ be
the union of {σγ′}β≤γ′<γ , σ<γ is a field automorphism of P<γ =

⋃
γ′<γ Pγ′ (if

γ = γ′+1 is a successor ordinal, then σ<γ = σγ′). Let S be a transcendence basis
of Pγ over P<γ , extend σ<γ to a field automorphism σγ by fixing S pointwise
and extending to the algebraic closure. For every γ′ < γ, σγ preserves Pγ′

setwise, so σγ is an Lγ-automorphism.
Once we constructed σγ for every β ≤ γ < α, we can construct σα, an Lα-

automorphism of M , in a similar fashion: take σ<α the union of {σγ}β≤γ<α,
fix a transcendence basis of M over P<α pointwise and extend to the algebraic
closure.

Proposition I.6.4. For an ordered set I:

1. If I is finite, or countable and well-ordered, then every completion of ACFI
is ω-stable.

2. If I is uncountable and well-ordered, then every completion of ACFI is
totally transcendental, and in particular superstable, but not ω-stable.

3. If I is not well-ordered, then every completion of ACFI is not superstable.

Proof. Fix a completion ACFIp (by Proposition I.6.2).
1. The theory ACFIp depends only on the order type of I, up to renam-

ing predicates, so it is enough to prove for I = α a finite or countable ordi-
nal. We will prove that ACFαp is ω-stable by transfinite induction on α < ω1.
For α = 0, ACF0

p = ACFp is ω-stable. If ACFαp is ω-stable, then note that
ACFα+1

p = ACFACFα
p

where we name the added predicate Pα, so by Corol-
lary I.5.26 ACFα+1

p is ω-stable.
Suppose that α is a countable limit ordinal and for every β < α, ACFβp

is ω-stable, the proof that ACFαp is ω-stable will be similar to the proof of
Theorem I.5.24. Let M |= ACFαp be a monster model and let C ⊆ M be a
countable subset. Denote P<α =

⋃
β<α Pβ . First we will show that every two

elements in M \ P<α(C) have the same type over C. Let a0, a1 ∈ M \ P<α(C),
for every β < α, a0 and a1 are transcendental over Pβ(C) so by Lemma I.3.14
there is an automorphism of M ↾ Lβ+1 preserving Pβ(C) and mapping a0 7→ a1.
Thus, a0 ≡Lβ+1

C a1 for every β < α, so a0 ≡Lα

C a1, as every formula in Lα
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belongs to some Lβ+1 where β is the largest ordinal such that Pβ appears in
the formula.

Now we will show that there at most countably many types over C realized
in P<α(C). Any element a ∈ P<α(C) solves some non-zero polynomial of the
form q(x; b, c) with b ∈ Pn<α and c ∈ Cm. There is some β < α such that b ∈ Pnβ ,
in particular a satisfies

ϕ(x; c) = ∃y ∈ Pβ (q(x; y, c) = 0 ∧ ∃x′q(x′; y, c) 6= 0).

Thus, any type in P<α(C) contains some formula ϕ(x; c) as above. There are
countably many formulas in Lα with parameters from C, so it is enough to prove
that there are at most countably many types that contain any given formula
ϕ(x; c) as above.

First of all, Pβ is stably embedded in M (every automorphism of Pβ can
be extended to an automorphism of M so we can use Fact I.5.19; alternatively,
ACFαp is stable so every definable subset is stably embedded), so every C-
definable subset of Pnβ is also definable in ACFαp with parameters from Pβ . Let
D ⊆ Pβ be the set of all the parameters needed to define every C-definable
subset of Pnβ . There are at most countably many definable subsets of Pnβ over
C, so D is countable.

Let [ϕ] ⊆ S
ACFα

p

1 (C) be the set of types implying ϕ(x; c) as above, we will
construct a map ρ : [ϕ] → S

ACFβ
p

n (D) such that ρ has finite fibers. Because ACFβp
is ω-stable, |SACFβ

p
n (D)| is countable, so this will imply that [ϕ] is countable as

needed.
For any type p(x) ∈ [ϕ], choose some realization a |= p. In particular,

|= ϕ(a; c), so we can choose some b ∈ Pnβ such that q(x; b, c) is non-zero and
q(a; b, c) = 0. Define ρ(p) = tpACFβ

p (b/D). Suppose p0, p1 ∈ [ϕ] and ρ(p0) =
ρ(p1), that is, if ai and bi are the specific elements we chose for pi (i = 0, 1),
then b0 ≡ACFβ

p

D b1. There is an automorphism of Pβ over D mapping b0 7→ b1,
which can be extended by Lemma I.6.3 to an automorphism of M over D, so
b0 ≡ACFα

p

D b1. We want to prove that b0 ≡ACFα
p

C b1. Suppose b0 belongs to some
C-definable set, we can assume that it is a subset of Pnβ because b0 ∈ Pnβ . By the
construction of D, this C-definable subset of Pnβ is also D-definable in ACFαp ,
so b1 belongs to it as b0 ≡ACFα

p

D b1.
Let σ ∈ Aut(M/C) be an automorphism mapping b0 7→ b1. We have

q(σ(a0); b1, c) = 0, thus a0 has the same type over C as a root of q(x; b1, c),
specifically σ(a0). It follows that every type in the fiber of ρ(p1) is a type over
C of a root of q(x; b1, c), however q(x; b1, c) is non-zero, so it has only finitely
many roots. Thus, ρ has finite fibers.

2. Suppose I is uncountable and well-ordered. If ACFIp was not totally tran-
scendental, there would be a binary tree of consistent formulas {ϕs(x; cs)}s∈2<ω

(see [TZ12, Definition 5.2.5]). Let I0 ⊆ I be the finite or countable subset of in-
dexes i ∈ I such that Pi appears in some formula ϕs. The tree {ϕs(x; cs)}s∈2<ω

is also a binary tree of consistent formulas in ACFI0p , so ACFI0p is not totally
transcendental. However, a subset of a well-ordered set is also well-ordered, so
by the previous part ACFI0p is ω-stable and in particular totally transcendental.

However, ACFI can not be ω-stable, as it is not inter-definable with a theory
in a countable language — each Pi for i ∈ I is a distinct definable set.
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3. Note that an ordered set I is well-ordered iff I does not contain an infinite
descending chain. If I is not well-ordered, let (ik)k<ω ⊆ I be a descending chain,
then (Pik)k<ω is a descending chain of definable subfields in ACFIp. Considering
only the additive group structure, (Pik)k<ω is a descending chain of definable
subgroups each of infinite index in the previous one, so ACFIp is not superstable
(see e.g. [TZ12, Exercise 8.6.10]).

I.6.2 Complete system of a Galois group
For a profinite group G one can associate a structure S(G), called the complete
system of G, in a multi-sorted language. This definition is due to [CvdDM81],
we will present the definition as given in [Ram18, Definition 7.1.6].

Definition I.6.5. Suppose G is a profinite group. Let N (G) be the collection
of open normal subgroups of G. Define

S(G) =
∐

N∈N (G)

G/N.

Let LG be the language with a sort Xn for each n < ω, two binary relation
symbols ≤, C and a ternary relation P . We regard S(G) as an LG-structure in
the following way:

• The coset gN is in the sort Xn iff [G : N ] ≤ n.

• gN ≤ hM iff N ⊆M .

• C(gN, hM) iff N ⊆M and gM = hM .

• P (g1N1, g2N2, g3N3) iff N1 = N2 = N3 and g1g2N1 = g3N1.

Note that we do not require the sorts to be disjoint (see [Cha98, §1] for a
discussion on the syntax of this structure).

For a field F , let G(F ) = Gal(F/F ) be the absolute Galois group of F ,
which is profinite. In [Ram18, Corollary 7.2.7], Ramsey proved that if F is
a PAC field such that Th(S(G(F )) is NSOP1, then Th(F ) is NSOP1. We will
prove the other direction, using the following fact, proved in [Cha02, Proposition
5.5].

Fact I.6.6. S(G(F )) is interpretable in (K,F ) where K is any algebraically
closed field extending F .

Proposition I.6.7. Let F be a PAC field. Then Th(F ) is NSOP1 iff Th(S(G(F )))
is NSOP1.

Proof. The left to right direction is [Ram18, Corollary 7.2.7]
For the right to left direction, let K ⊇ F be a large enough algebraically

closed extension, (K,F ) |= ACFTh(F ). From Theorem I.5.9 ACFTh(F ) is NSOP1,
but from Fact I.6.6 S(G(F )) is interpretable in (K,F ), so Th(S(G(F )) is NSOP1.
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I.6.3 Pseudo finite fields
Pseudo finite fields were first studied in [Ax68], we will give the definition from
[TZ12].

Definition I.6.8. Suppose F is a field. We say that F is pseudo-algebraically
closed if every absolutely irreducible variety over F has an F -rational point,
or equivalently if it is existentially closed in every regular extension. We say
that F is pseudo-finite if it is perfect, pseudo-algebraically closed and 1-free
(has exactly one extension of degree n for every n). Being pseudo-algebraically
closed or pseudo-finite is an elementary property [TZ12, Corollary B.4.3, Re-
mark B.4.12], so there are first-order theories PAC, PSF of pseudo-algebraically
closed, pseudo-finite fields respectively.

Proposition I.6.9. ACFldPSF is model complete.

Proof. If Q and R are pseudo-finite fields such that Q ⊆ R is a relatively
algebraically closed extension, that is Q∩R = Q, then Q ≺ R [FJ08, Proposition
20.10.2]. In particular, if Q ⊆ R is a regular extension, then it is relatively
algebraically closed, so Q ≺ R. Thus, by Theorem I.4.12, ACFldPSF is model
complete.

Proposition I.6.10. Every completion of ACFPSF is simple.

Proof. By Proposition I.4.1, completions of ACFPSF are given by completions
of PSF, which are simple by [TZ12, Corollary 7.5.6], so the result follows from
Theorem I.5.13. We will give another more direct proof using ACFA, the model
companion of difference fields, which is simple [Kim14, Example 2.6.9].

Let (M,P ) |= ACFPSF. We will show that there is an automorphism σ ∈
Gal(P/P ) such that Fix(σ) :=

{
a ∈ P | σ(a) = a

}
= P . Consider Pn the unique

cyclic extension of degree n of P and σn a generator of Gal(Pn/P ). The fixed
field of σn is P , so the inverse limit of σn is an automorphism of P̄ whose fixed
field is P .

By [Afs14, Corollary 1.2], we can embed (P , σ) into (N, σ′) a model of ACFA,
with Fix(σ′) = P . The structure (N,P ) is a reduct of (N, σ′), so it is simple.
The structures (M,P ), (N,P ) and (P , P ) are models of ACFPSF, and they
can be uniquely expanded to models of ACFldPSF. Lemma I.3.10 implies that
(P , P ) ⊆ (M,P ), (P , P ) ⊆ (N,P ) are substructures in ACFldPSF, because they
all share the same predicate. However, Proposition I.6.9 says that ACFldPSF is
model complete, so those are elementary substructures. In particular, they are
elementary substructures in ACFPSF. Because (N,P ) is simple and (P̄ , P ) ≺
(N,P ), we get that (P̄ , P ) is simple. But also (P̄ , P ) ≺ (M,P ), so (M,P ) is
simple.

I.7 Questions
There are several questions that arose in our work, which we did not address in
this paper.

Question I.7.1. What other classification properties can we lift from T to
ACFT ? NTP2, NSOPn (for n ≥ 2)?
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Question I.7.2. What results still hold when we replace ACF in ACFT with
a different theory of fields? SCF, ACVF? The theory of dense pairs of ACVF
was studied in [Del12].

Question I.7.3. What results still hold when we replace ACF in ACFT with
any strongly minimal theory? See Remark I.5.15.
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Chapter II

Fields with a distinguished
submodule

II.1 Introduction
The existentially closed models of a theory are those that are existentially closed
in every model extension. Existentially closed models have a random, or generic,
aspect to them by their definition — every finite quantifier free structure that
exists in some extension will also exist in the existentially closed model. Finding
first-order theories that axiomatize the class of existentially closed models is a
strong tool in studying the generic models, and if the theory is inductive this
will result in the model companion.

In [dE21b], d’Elbée studied the theory of models with a generic substruc-
ture. A particular example of interest to us is the theory of fields of positive
characteristic with a distinguished sub-vector space over a finite subfield, the
class of existentially closed models of this theory is first-order axiomatizable,
which gives rise to a model companion. The theory ACFpG of algebraically
closed fields of characteristic p > 0 with a generic additive subgroup is a specific
case of the above construction, as additive subgroups are sub-vector spaces over
Fp. This theory was extensively studied in [dE21a].

Furthermore, [dE21b] defines weak-independence and strong-independence,
and gives conditions for a model with a generic substructure to be NSOP1,
where weak-independence is Kim-independence (an introduction to those con-
cepts can be found in the previous chapter). The model companion of fields
of positive characteristic with a sub-vector space over a finite subfield satisfies
those conditions, so it is NSOP1. It was also proved that this model companion
is not simple ([dE21b, Proposition 5.20]).

It is a natural to try and generalize this results to fields that are of character-
istic 0, or vector spaces that are over infinite subfields. Another generalization
is to consider modules over infinite subrings (a finite subring is a field). In
[dE21b], d’Elbée showed that for fields of characteristic 0 with an additive sub-
group (which is a Z-module), the class of existentially closed models is not
first-order axiomatizable.

However, it is possible to study the existentially closed models of an induc-
tive theory in a different logical setting, namely in Robinson’s logic. In essence,
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it means that instead of studying models and elementary embeddings between
them, we study existentially closed models and embeddings between them (see
the introduction of [PY18]). Pillay [Pil00] refers to this setting as the Cate-
gory of existentially closed models. This approach was used by Haykazyan and
Kirby [HK21b] in their study of exponential fields — fields F with a distin-
guished homomorphism E : F+ → F× from the additive group structure to the
multiplicative group structure.

(We note that there is a recent interest in positive model theory, which is a
generalization of our setting (e.g. [Hay19, Hru20, DK21]).)

This chapter follows the steps of [HK21b], considering the structure of fields
with a submodule. We will first give a description of the existentially closed
fields with submodules (Theorem II.3.7). This description will not in general
be first-order, except for the case of positive characteristic and submodules over
a finite subring (see Remark II.3.8). We will then prove that the category of
existentially closed models of this theory is NSOP1 (see Theorem II.4.8) but not
NTP2 (and in particular, not simple; see Theorem II.4.2); the appropriate defi-
nitions for these concepts in the category of existentially closed models appear
in Section II.2.5, and are taken from [HK21b]. The proof of NSOP1 will use
weak independence (mentioned above). We will also study strong independence,
which does not help with proving NSOP1 but has interesting properties of its
own, including n-amalgamation for every n (see Theorem II.5.5). In the proofs
we are using a definition of higher amalgamation that is slightly different from
the one found in the literature (see [Hru98, dPKM06, GKK13]). In the appendix
we study this notion of amalgamation and its relation to independence.

II.2 Preliminaries
In this section, we will present the definitions and facts needed to work in the
category of existentially closed models. Unless stated otherwise, all definition
and results will be given as they are presented by Haykazyan and Kirby [HK21b].

II.2.1 Existentially closed models of an inductive theory
Definition II.2.1. A model M |= T is called existentially closed if for every ex-
tension M ⊆ N |= T , and every quantifier-free formula ϕ(x, a) with parameters
a ∈M , N |= ∃xϕ(x, a) =⇒ M |= ∃xϕ(x, a).

Remark II.2.2. If T is inductive, then for every A |= T we can construct by
transfinite induction an extension A ⊆ M such that M |= T is existentially
closed.

Let Emb(T ) be the category of models of T with embeddings between them.
Let EC(T ) be the full subcategory of Emb(T ) consisting of existentially closed
models and embeddings between them (which in particular preserve existential
formulas).

Fact II.2.3 ([HK21b, Fact 2.3]). For two inductive theories T1 and T2, the
following are equivalent

1. The theories T1 and T2 have the same universal consequences.
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2. Every model of T1 embeds into a model of T2 and vice-versa.

3. The existentially closed models of T1 and T2 are the same.

Two theories T1 and T2 satisfying the above equivalent conditions are called
companions. Thus, EC(T ) uniquely determines the theory T modulo companions
for T inductive.

We will also use the following fact.

Fact II.2.4 ([HK21b, Fact 2.2]). Let M be a model of an inductive theory T .
The following are equivalent.

1. M is an existentially closed model of T .

2. For every tuple a ∈M , the type tpM∃ (a) is a maximal existential type.

Remark II.2.5. In particular, if M is an existentially closed model of T , and
A ⊆M is a subset, then tpM∃ (a/A) is a maximal existential type over A. Indeed,
let MA be the model M with added constant symbols for A, and let TA be the
same theory as T but in the expanded language. Every model of TA extending
MA must interpret the constant symbols as A, so MA is an existentially closed
model of TA, as we allow parameters in the definition of existentially closed.
The result then follows from Fact II.2.4.

II.2.2 Amalgamation and joint embedding
Definition II.2.6. A model A |= T is an amalgamation base for Emb(T ) if for
every two models B1, B2 |= T and embeddings f1 : A → B1 and f2 : A → B2,
then there is a model C |= T and embeddings g1 : B1 → C and g2 : B2 → C
such that g1 ◦ f1 = g2 ◦ f2.

Furthermore, A is a disjoint amalgamation base if we can pick g1, g2 such
that g1(B1) ∩ g2(B2) = g1(f1(A)).

Fact II.2.7 ([Hod93, Corollary 8.6.8]). Every existentially closed model is a
disjoint amalgamation base.

Definition II.2.8. The category Emb(T ) has the joint embedding property
(JEP) if any two models of T can be embedded into a third model.

In the category of existentially closed models, extending T to an inductive
theory T ′ with JEP corresponds to choosing a completion in first-order logic.
However, we need to make sure that EC(T ′) is contained in EC(T ). This gives
rise to the following definition.

Definition II.2.9. An inductive extension T ′ of an inductive theory T is called
a JEP-refinement of T if T ′ has JEP and every existentially closed model of T ′

is an existentially closed model of T

Fact II.2.10 ([HK21b, Lemma 2.12]). If A is an amalgamation base for Emb(T ),
then T ∪ Th∃(A) is a JEP-refinement of T .

Furthermore, an existentially closed model of T is a model of a unique JEP-
refinement of T modulo companions.
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II.2.3 Higher amalgamation
We proceed to define higher amalgamation, as it was defined in [HK21b].

Let K ⊆ Emb(T ) be a subcategory. Let n ≥ 3, consider n as a set n =
{0, . . . , n− 1} and consider P(n) and P−(n) = P(n) \ {n} as categories with a
unique morphism a → b if a ⊆ b. Define a P(n)-system (respectively, P−(n)-
system) of K to be a functor F from P(n) (respectively, P−(n)) to K. For each
a ∈ P(n), denote Fa = F (a).

Suppose that for every M ∈ K, we have a ternary relation |⌣ on subsets of
M . A P(n)-system (P−(n)-system) F is called independent with respect to |⌣,
if for every a ∈ P(n) (a ∈ P−(n)) and every b ⊆ a,

Fb |⌣⋃
c(b Fc

⋃
b ̸⊆d⊆a

Fd

as subsets of Fa, where we consider every embedding Fb → Fa as an inclusion.

Definition II.2.11. Suppose K, |⌣ are as above. Say that K has n-amalgamation
(n ≥ 3) if any independent P−(n)-system in K can be completed to an in-
dependent P(n)-system. Say that T has n-amalgamation if Emb(T ) has n-
amalgamation.

Note that this definition of independent systems and n-amalgamation is not
the same as the one used by other authors, e.g. [Hru98, dPKM06, GKK13]. It
is, however, similar to the definition of stable systems found in [She90], with the
main difference being that in stable systems all embeddings are inclusions and
everything lives inside the monster model, so there is no amalgamation. This
enables us to use the following fact, which is originally stated for general stable
theories, but will be presented here as in [HK21b, Fact 5.3] where it is stated
specifically for ACF.

Fact II.2.12 ([She90, Fact XII.2.5]). Let F = {Fs}s⊆n be an independent P(n)-
system of ACF, where every Fs is considered as a subset of Fn, and let t ⊆ n.
For i < m let s(i) ∈ P(n) and let āi ∈ Fs(i). Assume that for some formula
ϕ(x̄0, . . . , x̄m−1) we have Fn |= ϕ(ā0, . . . , ām−1). Then there are ā′i ∈ Fs(i)∩t
such that Fn |= ϕ(ā′0, . . . , ā

′
m−1), and if s(i) ⊆ t, then ā′i = āi.

In Appendix A we prove some well known results about higher amalgamation
using our definition, including the fact that ACF has n-amalgamation for every
n (Proposition A.1.3).

II.2.4 Monster model
We present a notion of saturation for the category of existentially closed models.
It is convenient to work inside a large saturated model, which we will call a
monster model.

This section borrows from [HK21b, §2.4], except for our definition of strong
κ-homogeneity and Proposition II.2.15, see Remark II.2.16.

Definition II.2.13. Let T be an inductive theory with JEP, and suppose M
is an existentially closed model of T . Let κ be a cardinal.
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• M is called κ-saturated if every unitary existential type with parameters
from a set A ⊆M of cardinality less than κ is realized in M .

• M is called κ-universal if for every A |= T , and a tuple a ⊆ A with |a| < κ,
there exists a tuple b ⊆M realizing tpA∃ (a) (that is, tpA∃ (a) ⊆ tpM∃ (b)).

• M is called κ-homogeneous if for any two tuples a, b from M with length
less than κ such that a ≡∃ b, and every singleton a′ ∈ M , there exists a
singelton b′ ∈M such that aa′ ≡∃ bb′.

• M is called strongly κ-homogeneous if for any two tuples a, b from M with
length less than κ such that a ≡∃ b, there exists an automorphism σ of M
such that σ(a) = b.

Remark II.2.14. If κ > |L|, then M is κ-universal iff every model A |= T of
size less than κ can be embedded in M , by Löwenheim-Skolem.

Proposition II.2.15. In the same settings as above, the following are equiva-
lent:

1. M is κ-saturated,

2. M is κ+-universal and κ-homogeneous

3. M is ℵ0-universal and κ-homogeneous

Furthermore, if κ = |M |, the κ-homogeneity implies strong κ-homogeneity.

Proof. (1) =⇒ (2): Suppose M is κ-saturated. To prove κ+-universality,
let A |= T and let a = (ai)i<κ ⊆ A be a tuple. For α ≤ κ, denote a<α =
(ai)i<α. We will construct b = (bi)i<κ satisfying tpA∃ (a), by constructing b<α
by induction on α ≤ κ. For α = 1, by JEP there is some model N |= T and
embeddings f1 : A → N and f2 : M → N . f1(a0) realizes tpA∃ (a0) in N , as
it is an existential type. Because M is existentially closed and embeds in N ,
it follows that tpA∃ (a0) is consistent in M , and there is b0 ∈ M realizing it
by saturation. For α + 1, consider the existential type p(x) = tpA∃ (aα/a<α),
replacing the parameters a<α with b<α results in a consistent existential type
q(x) in M , because for every finite conjunction ψ(x, b<α) of formulas from q(x),
we have A |= ∃xψ(x, a<α), so M |= ∃xψ(x, b<α). By saturation there is some
bα ∈M satisfying q(x), so B<αbα = b<α+1 satisfies tpA∃ (a<α+1). If α is a limit
ordinal, take the union b<α =

⋃
β<α b<β .

To prove κ-homogeneity, suppose a, b ⊆ M are tuples of length less than κ,
and let a′ ∈ M . Consider p(x) = tpM∃ (a′/a), replacing the parameters a by
b results in a consistent existential type, because for every finite conjunction
ψ(x, b) of formulas from q(x), we have A |= ∃xψ(x, a), so M |= ∃xψ(x, b).

(2) =⇒ (3): trivial.
(3) =⇒ (1): First we will prove that κ-universality and κ-homogeneity im-

ply κ-saturation: Let p(x) be a unitary existential type (|x| = 1) over A ⊆M of
size less than κ. There is some extension N ⊇M with an element b ∈ N realiz-
ing p(x). By κ-universality, there is some A′b′ ⊆M that satisfy tpN∃ (Ab), when
considered as tuples. In particular, we have A′ ≡∃ A in M , so by κ-homogeneity
there is some b′′ ∈M such that A′b′ ≡∃ Ab′′. Thus, b′′ |= tpM∃ (b/A) = p(x).

Now, assuming ℵ0-universality and κ-homogeneity, will prove by induction
on λ ≤ κ that M is λ-saturated. For λ = ℵ0, it follows from the above claim.
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For λ+, we know that M is λ-saturated, so by (1) =⇒ (2) M is λ+-universal.
We also know that M is λ+-homogeneous, so by the claim M is λ-saturated.
For λ a limit cardinal, a set of parameters A ⊆M of size less than λ, is also of
size less than µ for some µ < λ.

For the “furthermore” part, if M is |M |-homogeneous and a ≡∃ b in M , we
can construct an automorphism mapping a to b by the back and forth method.

Remark II.2.16. Our definition of strong κ-homogeneity differs from the one
given in [HK21b], which is

• M is called strongly κ-homogeneous if for any amalgamation base A of size
less than κ and embeddings f1, f2 of A in M , there exists an automorphism
σ of M such that σ ◦ f1 = f2.

However, strong κ-homogeneity in our definition implies strong κ-homogeneity
in their definition: A is an amalgamation base, so there is a model N |= T and
embeddings g1, g2 of M in N such that g1 ◦ f1 = g2 ◦ f2. With A considered as
a tuple, we have

tpM∃ (f1(A)) = tpN∃ (g1(f1(A))) = tpN∃ (g2(f2(A))) = tpM∃ (f1(A)),

because M is existentially closed. From our definition of strong homogeneity,
there is an automorphism σ of M such that σ(f1(A)) = f2(A) considered as
tuples, thus σ ◦ f1 = f2.

Call M saturated if it is |M |-saturated. We will call a large saturated model
a monster model. In these settings, monster models are often called universal
domains, or e-universal domains, but we kept the notation of [HK21b].

We will assume that monster models exist. This usually requires some set
theoretic assumptions like the generalized continuum hypothesis, but one can
change the set-theoretic universe without changing any object we are interested
in, ensuring that monster models of large enough sizes exist. One can also
work without a monster model, using only commuting diagrams, but it is less
convenient.

II.2.5 Model theoretic tree properties
We will present two properties of formulas, TP2 and SOP1, adapted to the
category of existentially closed models. The main difference is that the formulas
have to be existential, and there must be an existential formula that witnesses
inconsistency. In the following, let T be an inductive theory with JEP, and work
inside a monster model M |= T .

Definition II.2.17. An existential formula ϕ(x, y) (x, y tuples) has TP2 with
respect to EC(T ) if there is an amalgamation base A |= T , an existential formula
ψ(y1, y2) and parameters (ai,j)i,j<ω from A such that the following hold:

1. for all σ ∈ ωω, the set
{
ϕ(x, ai,σ(i)

}
is consistent.

2. ψ(y1, y2) implies that ϕ(x, y1) ∧ ϕ(x, y2) is inconsistent, i.e.

T ` ¬∃xy1y2[ψ(y1, y2) ∧ ϕ(x, y1) ∧ ϕ(x, y2)]
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3. for every i, j, k < ω, if j 6= k, then A |= ψ(ai,j , ai,k).

If no existential formula has TP2, we say that EC(T ) is NTP2.

Definition II.2.18. An existential formula ϕ(x, y) (x, y tuples) has SOP1 with
respect to EC(T ) if there is an amalgamation base A |= T , an existential for-
mula ψ(y1, y2) and a binary tree of parameters (aη)η∈2<ω from A such that the
following hold:

1. for every branch σ ∈ 2ω, the set
{
ϕ(x, aσ|n)

}
is consistent.

2. ψ(y1, y2) implies that ϕ(x, y1) ∧ ϕ(x, y2) is inconsistent, i.e.

T ` ¬∃xy1y2[ψ(y1, y2) ∧ ϕ(x, y1) ∧ ϕ(x, y2)]

3. for all η ∈ 2<ω, if ν � η ⌢ 〈0〉, then A |= ψ(aη⌢⟨1⟩, aν).

If no existential formula has SOP1, we say that EC(T ) is NSOP1.

Remark II.2.19. If the class EC(T ) is first-order axiomatizable by T ′, that is
T ′ is the model companion of T , then the above definitions are equivalent to T ′

being NTP2, NSOP1 respectively in the usual first-order sense.

There is a Kim-Pillay style characterization for NSOP1 theories in the cat-
egory of existentially closed models. This characterization is due to Haykazyan
and Kirby [HK21b], and is based on a theorem of Chernikov and Ramsey [CR16]
for complete first-order theories.

Fact II.2.20 ([HK21b, Theorem 6.4]). Let |⌣ be a Aut(M) ternary relation
on small subsets of M. Assume that |⌣ satisfies the following, for any small
existentially closed model M and tuples a, b from M:

• (Strong finite character) if a 6 |⌣M
b, then there is an existential formula

ϕ(x, b,m) ∈ tp∃(a/Mb) such that for any a′ realizing ϕ, the relation a′ 6
|⌣M

b holds.

• (Existence over models) a |⌣M
M

• (Monotonicity) aa′ |⌣M
bb′ implies a |⌣M

b.

• (Symmetry) a |⌣M
b implies b |⌣M

a.

• (Independence theorem) If c1 |⌣M
c2, b1 |⌣M

c1, b2 |⌣M
c2 and b1 ≡∃

M b2
then there exists b with b ≡∃

Mc1
b1 and b ≡∃

Mc2
b2.

Then EC(T ) has NSOP1.

It is folklore that the independence theorem is equivalent to 3-amalgamation,
see e.g. the discussion under [Kim14, Definition 9.1.3]. However, different defini-
tions of amalgamation are used by different authors, as noted in the beginning
of Section II.2.3. For this reason we include in the Appendix a proof of this
equivalence in our setting (Proposition A.2.1).
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II.3 Special models of fields with a submodule
In this section, we will define the theory of fields with a submodule, and give a
characterization of special models that we are interested in: existentially closed
models and amalgamation bases.

II.3.1 Existentially closed models
For the rest of the paper, let R be an integral domain.

Lemma II.3.1. If A,B,C are R-modules such that B ⊆ A, then A∩(B+C) =
B + (A ∩ C).

Proof. It is clear that B + (A ∩ C) ⊆ A ∩ (B + C). For the other inclusion,
suppose a ∈ A ∩ (B + C). There are b ∈ B and c ∈ C such that a = b+ c, but
b ∈ b ⊆ A, so we get c = a− b ∈ A ∩ C. Thus, a ∈ B + (A ∩ C).

Definition II.3.2. Let LR;P be the language of rings with a constant symbol for
every element r ∈ R, and a unitary predicate P . Define the theory1 FR-module
in the language LR;P , to be the theory of fields with the quantifier-free diagram
of R, and P an R-module.

Remark II.3.3. If M,N |= FR-module, then

1. R is a subring of M .

2. M is an LR;P -substructure of N iff M is a subfield of N and PN∩M = PM

Example II.3.4. If R = Z, then FZ−module is the theory of fields of charac-
teristic 0 with an additive subgroup. If R = Q, then FQ−module is the theory
of fields of characteristic 0 with a divisible additive subgroup. If R = Fp, then
FFp−module is the theory of fields of characteristic p with an additive subgroup,
which was studied in [dE21b].

Definition II.3.5. Let K be a field containing R. Call a variety V ⊆ Kn R-free
if there is some field extension K ′ ⊇ K, and a ∈ K ′n a generic point of V over K,
such that a is R-linearly independent over K. That is, if r0a0+ · · ·+rn−1an−1 ∈
K for ri ∈ R, then r0 = · · · = rn−1 = 0.

Definition II.3.6. Let M |= FR-module be a field with a sub-R-module, and let
0 ≤ k ≤ n, 0 ≤ s. For a matrix A ∈ Matn×s(R) and a tuple c ∈Mn, call (A, c)
a k-compatible pair if for every r0, . . . , rk−1 ∈ R,

1. r0A0 + · · ·+ rk−1Ak−1 = 0 =⇒ r0c0 + · · ·+ rk−1ck−1 ∈ PM ,

2. for k ≤ i < n, either Ai 6= r0A0+· · ·+rk−1Ak−1, or r0c0+· · ·+rk−1ck−1−
ci /∈ PM ,

where Ai is the i-th row of A.

Theorem II.3.7. Let M |= FR-module be a field with a sub-R-module. The
model M is existentially closed iff for every R-free variety V ⊆ Ms and k-
compatible pair (A, c), where A ∈ Matn×s(R), c ∈ Mn, there is a point b ∈ V
such that for a = Ab+ c, a0, .., ak−1 ∈ PM and ak, .., an−1 /∈ PM .

1F stands for the theory of fields, as ACF stands for the theory of algebraically closed fields.
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Proof. For the left to right implication, suppose V,A, c are as above. There
is some field extension M ′ ⊇ M with b′ ∈ M ′, such that b′ is a generic point
of V over M . Let a′ = Ab′ + c, and consider M ′ as a model of FR-module,
with PM ′ = PM + 〈a′0, . . . , a′k−1〉R. To show that M is an LR,P -substructure
of M ′, we need to show that PM ′ ∩M = PM . By Lemma II.3.1, PM ′ ∩M =
(PM + 〈a′0, . . . , a′k−1〉R) ∩M = PM + (〈a′0, . . . , a′k−1〉R ∩M), so it is enough to
show 〈a′0, . . . , a′k−1〉R ∩M ⊆ PM . Suppose m ∈ 〈a′0, . . . , a′k−1〉R ∩M , we can
write m = r0a

′
0 + · · · + rk−1a

′
k−1 with ri ∈ R. Substitute a′i for Aib′ + ci and

rearrange to get

(r0A0 + · · ·+ rk−1Ak−1)b
′ = m− (r0c0 + · · ·+ rk−1ck−1) ∈M.

However, b′ is R-linearly independent over M , so we must have r0A0 + · · · +
rk−1Ak−1 = 0. This implies that m = r0c0 + · · · + rk−1ck−1, and by k-
compatibility r0c0 + · · ·+ rk−1ck−1 ∈ PM , so m ∈ PM .

Consider the formula

ϕ(y) = V (y) ∧
∧
i<k

Aiy + ci ∈ P ∧
∧

k≤i<n

Aiy + ci /∈ P

where |y| = |b′|. We want to show that ϕ(y) is satisfied by b′ in M ′. It is
obvious that b′ ∈ V (M ′) and Aib′+ ci = a′i ∈ PM ′ for i < k, it remains to prove
that Aib′ + ci = a′i /∈ PM ′ for k ≤ i < n. Assume towards contradiction that
a′i ∈ PM ′ for some k ≤ i < n, then there are r0, . . . , rk−1 ∈ R and p ∈ PM such
that a′i = p+ r0a

′
0 + · · ·+ rk−1a

′
k−1. Substitute a′j for Ajb′ + cj and rearrange

to get

(Ai − r0A0 + · · · − rk−1Ak−1)b
′ = p+ r0c0 + · · ·+ rk−1ck−1 − ci ∈M.

Again, because b′ is R-linearly independent over M , this implies Ai − r0A0 +
· · · − rk−1Ak−1 = 0, so Ai = r0A0 + · · · + rk−1Ak−1. It also follows that
p+ r0c0 + · · ·+ rk−1ck−1 − ci = 0, so r0c0 + · · ·+ rk−1ck−1 − ci = −p ∈ PM , in
contradiction to k-compatibility. ϕ(y) is satisfied by b′ in M ′, so by existential
closeness there is some b ∈ V (M), such that a = Ab+c satisfies a0, .., ak−1 ∈ PM ,
ak, .., an−1 /∈ PM , as needed.

For the right to left implication, let M |= FR-module satisfy the right-hand
condition, and let M ′ |= FR-module be some model extending M . We need to
show that for every formula ψ(x) which is a conjunction of atomic formulas,
where x = (x0, . . . , xn−1) is a tuple of variables, if M ′ |= ∃xψ(x), then M |=
∃xψ(x). Atomic formulas in LR;P take one of the following forms:

1. q(x) = 0,

2. q(x) 6= 0,

3. q(x) ∈ P ,

4. q(x) /∈ P ,

where q(x) is a polynomial over M . Let ψ(x) be a conjunction of atomic for-
mulas. By introducing more variables, we can replace the atomic formulas of
the second form q(x) 6= 0 with xn · q(x) = 1, to get an atomic formula of the
first form, because ∃x(q(x) 6= 0) ⇐⇒ ∃x, xn(xn · q(x) = 1). Similarly we can
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replace the third and fourth forms q(x) ∈ P , q(x) /∈ P with q(x) = xn∧xn ∈ P ,
q(x) = xn ∧ xn /∈ P . After those replacements, we are left only with atomic
formulas of the forms q(x) = 0, xi ∈ P , and xi /∈ P .

Furthermore, suppose a′ ∈ M ′ witnesses the existence M ′ |= ∃xψ(x). For
every i < n, either a′i ∈ P or a′i /∈ P . Taking the conjunction of ψ with the
corresponding conditions xi ∈ P or xi /∈ P , we get a stronger formula ψ∗(x)
that is still satisfied by a′, and has the additional property that for every i < n
either xi ∈ P or xi /∈ P appears in ψ∗(x). Thus, it is enough to prove existential
closeness for formulas with the above property, and we can assume that ψ(x) is
of the form

ψ(x) =W (x) ∧ x0, .., xk−1 ∈ P ∧ xk, .., xn−1 /∈ P

where W (x) is a conjunction of polynomial equations, i.e. a variety over M .
Let a′ ∈ M ′ witness the existence M ′ |= ∃xψ(x). Consider the fraction

field of R, Frac(R) ⊆ M . There is some 0 ≤ s ≤ n, and some tuple b′ ∈ M ′s

that is Frac(R)-linearly independent over M , such that M + 〈a′〉Frac(R) =M ⊕
〈b′〉Frac(R). Write a′ = Ab′ + c for A ∈ Matn×s(Frac(R)), c ∈ Mn. We can
assume without loss of generality that A is a matrix over R, else let 0 6= d ∈ R
be the product of the denominators of all elements in A, and replace A, b′ with
dA, 1db

′ to get a matrix over R.
We will prove that (A, c) is a k-compatible pair. Let r1, . . . , rk ∈ R, if

r1A1 + · · ·+ rkAk = 0, then

PM ′ 3 r1a
′
1 + · · ·+ rka

′
k = (r1A1 + · · ·+ rkAk)b

′ + r1c1 + · · ·+ rkck

= r1c1 + · · ·+ rkck

but also r1c1+ · · ·+rkck ∈M , so r1c1+ · · ·+rkck ∈ PM . Suppose for k ≤ i < n
that both Ai = r1A1 + · · ·+ rkAk and r1c1 + · · ·+ rkck − ci ∈ PM , then

r1a
′
1 + · · ·+ rka

′
k − a′i = (r1A1 + · · ·+ rkAk −Ai)b

′ + r1c1 + · · ·+ rkck − ci

= r1c1 + · · ·+ rkck − ci ∈ PM .

Thus, a′i ∈ PM + 〈a′1, .., a′k〉R ⊆ PM ′ , a contradiction. Let V be the locus of b′
over M . The pair (A, c) is k-compatible and V is R-free, so by our assumption
there exists b ∈ V , such that for a = Ab+c we have a1, .., ak ∈ PM , ak+1, .., an /∈
PM . Furthermore, W (Ay + c) is contained in V (y), as a′ = Ab′ + c belongs to
W , so a = Ab+ c ∈W . We found a ∈Mn such that M |= ψ(a), as needed.

Remark II.3.8. Let M be an existentially closed model of FR−module. Then
R is definable as a subset of M . Indeed, R = {x ∈M | xPM ⊆ PM}: ‘⊆’ is
clear. For the other direction assume by contradiction that m ∈ M \ R and
mPM ⊆ PM , and consider the structure N = (M(t), PM + R t

m ), where t is
transcendental over M . Then it is easy to check that N is an extension of M
and that t /∈ PN . Thus, N |= ∃x(x ∈ P ∧mx /∈ P ) (the second conjunct uses
the assumption towards contradiction), and since M is existentially closed, we
get a contradiction. This is essentially the same proof as [dE21b, Proposition
5.32].

It follows that if R is infinite, then the class of existentially closed models
of FR−module is not elementary — else, starting with some existentially closed
model, we could construct by compactness an existentially closed model extending
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it with a strictly larger R. On the other hand, if R is finite, then this class is
elementary, by [dE21b, Proposition 5.4]. In particular, if R is infinite, the
characterization of existentially closed models given in Theorem II.3.7 is not
first-order.

II.3.2 Amalgamation bases
Theorem II.3.9. The amalgamation bases of FR-module are precisely the alge-
braically closed fields with sub-R-modules, ACFR-module. Furthermore, they are
disjoint amalgamation bases.

Proof. Let M be an algebraically closed fields with a sub-R-module, and f1 :
M →M1, f2 :M →M2 be embeddings of fields with sub-R-modules. There is
an algebraically closed field N and field embeddings g1 :M1 → N , g2 :M2 → N
such that g1 ◦ f1 = g2 ◦ f2 and M1 |⌣

ACF

M
M2 in N , where we identify the fields

with their images under the embeddings. In particular, M1 ∩M2 =M , because
M is algebraically closed.

Give N an LR;P structure by defining PN = PM1
+ PM2

. To show that
M1, M2 are LR;P substructures of N , we need to show that M1 ∩ PN = PM1

,
and M2 ∩ PN = PM2

will follow from symmetry. By Lemma II.3.1, M1 ∩ PN =
M1∩(PM1

+PM2
) = PM1

+(M1∩PM2
), and we haveM1∩PM2

=M1∩M2∩PM2
=

M ∩PM2
= PM , so M1∩PN = PM1

+PM = PM1
. Thus, M is an amalgamation

base, and from M1 ∩M2 =M it is a disjoint amalgamation base.
Suppose M |= FR-module is not algebraically closed. There is an element

a ∈M \M . Let M1 =M2 =M , but define PM1
= PM , PM2

= PM+〈a〉R. Note
that PM2

∩M = PM , because if p+ra ∈ (PM+〈a〉R)∩M , then ra ∈M , so r = 0,
which implies p+ra = p ∈ PM ; thus M ⊆M2 is an LR;P -substructure. Suppose
we could amalgamate M1, M2 to a model N |= FR-module by embeddings g1 :
M1 → N , g2 :M2 → N , such that g1|M = g2|M . By changing N , we can assume
that g2 is an inclusion M2 ⊆ N , and in particular a ∈ PM2

⊆ PN . However,
M1 = M , so Im(g1) = M and there is some b ∈ M1 such that g1(b) = a.
In particular, b ∈ PM1

= PM . This would imply a = g1(b) = b ∈ M , as
g1|M = idM , a contradiction. Thus, M is not an amalgamation base.

II.4 Classification
II.4.1 TP2

We will construct a formula that is TP2 in every JEP refinement of FR-module,
as per Definition II.2.17. In particular, this will prove that for every JEP re-
finement T , EC(T ) is not NTP2.

Lemma II.4.1. If M |= FR-module is existentially closed, then the index [M :
PM ] = ∞.

Proof. If M ′ ⊇ M is a large enough field extension, then in particular [M ′ :
PM ] = ∞. Consider the LR;P -structure on M ′ given by PM ′ = PM , M is an
LR;P -substructure of M ′. The fact that [M ′ : PM ′ ] = ∞ can be expressed by
existential sentences “there exist at least n elements in different P -cosets” for
every n, so by existential closeness we have [M : PM ] = ∞.
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Theorem II.4.2. Let T be some JEP refinement of FR-module. The formula
ϕ(x; y, z) = y · x+ z ∈ P has TP2 with respect to EC(T ).

Proof. Take the formula ψ(y1, z1; y2, z2) to be y1 = y2 ∧ z1 − z2 /∈ P . Let
M |= T be existentially closed such that |M | > |R| + ℵ0, in particular it is an
amalgamation base, and it is existentially closed in FR-module. The fact that
|M | > |R| + ℵ0 implies in particular that dimFrac(R)(M) ≥ ℵ0, so there are
β1, β2, · · · ∈ M such that 1, β1, β2, . . . are Frac(R)-linearly independent, and
in particular R-linearly independent. By Lemma II.4.1, [M : PM ] = ∞, so
there are γ1, γ2, · · · ∈ M that are all in different PM -cosets. Take the sequence
of tuples aij = (βi, γj). Conditions (2) and (3) of Definition II.2.17 obviously
hold, it remains to show (1). Let σ ∈ (ω\{0})ω\{0}, by compactness it is enough
to show that for every n > 0,

∧n
i=1(βi · x+ γσ(i) ∈ P ) is consistent.

Consider the variety V (x0, x1, . . . , xn) given by

x1 = β1x0,

...
xn = βnx0.

Let b′ = (b′0, β1b
′
0, . . . , βnb

′
0) be a generic point of V in some field extension.

Suppose that for r0, . . . , rn ∈ R we have

r0b
′
0 + r1β1b

′
0 + · · ·+ rnβnb

′
0 ∈M,

(r0 + r1β1 + · · ·+ rnβn)b
′
0 ∈M,

then r0+ r1β1+ · · ·+ rnβn = 0, else we would get b′0 ∈M . But 1, β1, . . . , βn are
R-linearly independent, so we must have r0 = · · · = rn = 0, thus V is R-free.
Consider the n× (n+ 1) matrix

A =

0 1 0
... . . .
0 0 1


and the tuple c = (γσ(1), . . . , γσ(n)). We claim that A and c are n-compatible.
It is enough to see that the matrix A is of rank n, so if r1A1 + · · ·+ rnAn = 0,
then r1 = · · · = rn = 0. From Theorem II.3.7, it follows that there is a point
b = (b0, β1b0, . . . , βnb0) ∈ V such that for

Ab+ c = (β1b0 + γσ(1), . . . , βnb0 + γσ(n))

we have βib0 + γσ(i) ∈ PM , as needed.

Remark II.4.3. The above implies in particular that every JEP refinement
of FR-module is non-simple, by [HK21b, Proposition A.5], where the definition
for simplicity in the category of existentially closed models is given in [HK21b,
Definition A.4].
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II.4.2 NSOP1

We will show that every for every JEP refinement T of FR-module, EC(T ) is
NSOP1, using Fact II.2.20. The independence relation that we will use was de-
fined in [dE21b, Definition 3.1], and called weak independence. We will present
the definition for our specific case.

Definition II.4.4. For a model M |= ACFR-module, and subsets A,B,C ⊆
M , say that A and B are weakly independent over C, and denote A |⌣

w

C
B, if

A |⌣
ACF

C
B and PM ∩ (AC +BC) = PM ∩AC + PM ∩BC.

Remark II.4.5. The inclusion PM ∩ AC + PM ∩ BC ⊆ PM ∩ (AC + BC) is
always true.

Lemma II.4.6 (3-amalgamation). ACFR-module has 3-amalgamtion, meaning
any weakly independent P−(3)-system of ACFR-module can be completed to a
weakly independent P(3)-system.

Proof. Suppose M = {Ms}s∈P−(3) is a weakly independent P−(3)-system of
ACFR-module, and denote Ps = PMs . By Proposition A.1.3 there is some alge-
braically closed field M3 that completes M as an independent system of ACF.
By embedding all the system in M3, we can assume that the embeddings are
inclusions. Define P3 = P0̂ + P1̂ + P2̂, where î = 3 \ {i}, and consider (M3, P3)
as a model of ACFR-module. We need to show that M3 is an LR;P -extension of
the rest of the system, that is that P3 ∩Mî = Pî. By symmetry it is enough to
prove for i = 0.

By Lemma II.3.1, P3∩M0̂ = (P0̂+P1̂+P2̂)∩M0̂ = P0̂+(P1̂+P2̂)∩M0̂, so it is
enough to prove (P1̂+P2̂)∩M0̂ ⊆ P0̂. Let m0̂ ∈ (P1̂+P2̂)∩M0̂, there are p1̂ ∈ P1̂,
p2̂ ∈ P2̂ such that m0̂ = p1̂+p2̂. Fact II.2.12 applied for t = 1̂ implies that there
exists m{0} ∈ M{0}, m{2} ∈ M{2} such that m{2} = p1̂ + m{0}, in particular
p1̂ ∈M{0}+M{2}. However, by weak independence in M1̂, P1̂∩(M{0}+M{2}) =

P{0} + P{2}, so p1̂ ∈ P{0} + P{2}. Similarly, by applying Fact II.2.12 for t = 2̂,
we get p2̂ ∈ P{0} + P{1}. Altogether, m0̂ = p1̂ + p2̂ ∈ P{0} + P{1} + P{2}. By
Lemma II.3.1, (P{0} + P{1} + P{2}) ∩ M0̂ = P{0} ∩ M0̂ + (P{1} + P{2}), but
P{1} + P{2} ⊆ P0̂, so it is enough to prove P{0} ∩M0̂ ⊆ P0̂. ACF-independence
of the P(3)-system implies that M{0} |⌣

ACF

M∅
M0̂ in M3, and M∅ is algebraically

closed so M{0} ∩M0̂ =M∅. Thus,

P{0} ∩M0̂ = P{0} ∩M{0} ∩M0̂ = P{0} ∩M∅ = P∅ ⊆ P0̂.

It remains to show that the system is weakly independent. By symmetry,
there are only two general cases we need to check

1. M0̂ |⌣
w

M{1}M{2}
M1̂M2̂,

2. M0̂ |⌣
w

M∅
M{0}.

Because the system is ACF-independent, we already haveM0̂ |⌣
ACF

M{1}M{2}
M1̂M2̂,

M0̂ |⌣
ACF

M∅
M{0}. For the first case, notice that P3 ∩M0̂ = P0̂, P3 ∩M1̂M2̂ ⊇

P1̂ + P2̂, so

P3 ∩M0̂ + P3 ∩M1̂M2̂ ⊇ P0̂ + P1̂ + P2̂ = P3 ⊇ P3 ∩ (M0̂ +M0̂M1̂)
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where the other inclusion is obvious (Remark II.4.5). For the second case, by
Lemma II.3.1 P3 ∩ (M0̂ +M{0}) = (P0̂ + P1̂ + P2̂) ∩ (M0̂ +M{0}) = P0̂ + (P1̂ +
P2̂)∩ (M0̂+M{0}), so it is enough to show (P1̂+P2̂)∩ (M0̂+M{0}) ⊆ P0̂+P{0}.
Let p1̂ + p2̂ ∈ (P1̂ + P2̂) ∩ (M0̂ +M{0}), where p1̂ ∈ P1̂, p2̂ ∈ P2̂. We can write
p1̂+p2̂ = m0̂+m{0}, where m0̂ ∈M0̂, m{0} ∈M{0}. By Fact II.2.12 applied for
t = 1̂, there are m′

{0} ∈M{0}, m{2} ∈M{2} such that p1̂+m′
{0} = m{2}+m{0},

so p1̂ ∈ M{0} +M{2}. By weak independence in M1̂, P1̂ ∩ (M{0} +M{2}) =

P{0} + P{2}, so p1̂ ∈ P{0} + P{2}. Similarly, by applying Fact II.2.12 for t = 2̂,
p2̂ ∈ P{0} + P{1}. Thus, p0̂ + p2̂ ∈ P{0} + P{1} + P{2} ⊆ P0̂ + P{0}.

Lemma II.4.7. Suppose M is a monster model of a JEP-refinement of FR-module.
For a singleton a ∈ M, a tuple b ∈ M and C ⊆ M, if a ∈ C(b), then there is a for-
mula ϕ(x, b, c) ∈ tp∃(a/Cb) isolating the type, in the sense that if a′ |= ϕ(x, b, c)
then a′ ≡∃

Cb a.
Furthermore, we can choose ϕ(x, b, c) in such a way that for any a′, b′ ∈ M,

|= ϕ(a′, b′, c) implies a′ ∈ C(b′).

Proof. We have a ∈ C(b), so there is some non-zero polynomial q(x, b, c) with
a as a root, where c ∈ C. In particular, the formula q(x, b, c) = 0 belongs to
tp∃(a/Cb) and has finitely many realizations. Take some formula ϕ(x, b, c) ∈
tp∃(a/Cb) with a minimal number of realizations, a conjunction of existential
formulas is existential, so ϕ(x, b, c) must imply every formula in tp∃(a/Cb). Let
a′ |= ϕ(x, b, c), it follows that a′ |= tp∃(a/Cb), that is tp∃(a

′/Cb) ⊇ tp∃(a/Cb).
On the other hand, Remark II.2.5 says that tp∃(a/Cb) is a maximal existential
type, so tp∃(a

′/Cb) = tp∃(a/Cb).
For the “furthermore” part, we can assume that ϕ(x, y, c) ` q(x, y, c) =

0 ∧ ∃x′q(x′, y, c) 6= 0, because for y = b we know it is true, so we can take the
conjunction of this formula with ϕ(x, y, c) without changing ϕ(x, b, c). Thus, if
|= ϕ(a′, b′, c), then in particular a′ is a root of the non-zero polynomial q(x, b′, c),
so a′ ∈ C(b′).

Theorem II.4.8. Suppose T is a JEP-refinement of FR-module, then EC(T ) has
NSOP1.

Proof. We will use Fact II.2.20, with the weak independence |⌣
w.

Let M be a monster model of T , and let P = PM. Invariance, symmetry and
existence over models are trivial. For monotonicity, suppose A,B,C,D ⊆ M,
and A |⌣

w

C
BD. By monotonicity of independence in ACF, we have A |⌣

ACF

C
B.

We also get that

P ∩ (AC +BC) = P ∩ (AC +BDC) ∩ (AC +BC)

= (P ∩AC + P ∩BDC) ∩ (AC +BC)

= P ∩AC + P ∩BDC ∩ (AC +BC)

= P ∩AC + P ∩ (BDC ∩AC +BC)

where the last two equalities follow from Lemma II.3.1, because P ∩ AC ⊆
AC+BC andBC ⊆ BDC. However, A |⌣

ACF

C
BD implies thatBDC∩AC = C,

so we get P ∩ (AC +BC) = P ∩AC + P ∩BC. Thus, A |⌣
w

C
B.

Proposition A.2.1 will give us the independence theorem. Note that to use
Proposition A.2.1 we need 3-amalgamation of EC(T ), but Lemma II.4.6 gives

46



us 3-amalgamation of ACFR-module. However, if we start with a weakly inde-
pendent P−(3)-system {As}s∈P−(3) of EC(T ), we can turn it into a system of
ACFR-module by taking the algebraic closure As. The system

{
As

}
s∈P−(3)

is
still weakly independent because weak independence is algebraic, i.e. A |⌣

w

C
B

implies A |⌣
w

C
B. The completion of the system, A3 |= ACFR-module, can be

expanded to a model of T , because A3 is a model of FR-module ∪Th∃(A∅), which
is a companion of T (Fact II.2.10).

For strong finite character, suppose a 6 |⌣
w

M
b, and let A =M(a), B =M(b).

If a 6 |⌣
ACF

M
b, then the result follows from strong finite character in ACF. Else,

there is some s ∈ P ∩ (A + B) \ (P ∩ A + P ∩ B). There are α ∈ A, β ∈ B
such that s = α+ β. We claim that β /∈M +P ∩B. Otherwise, there are some
m ∈M , p ∈ P ∩B such that β = m+p, and so s = α+m+p. This implies that
s− p = α+m ∈ P ∩A, thus s = α+m+ p ∈ P ∩A+ P ∩B, a contradiction.

There are formulas ψα(y, a,m) ∈ tp∃(α/Ma) and ψβ(z, b,m) ∈ tp∃(β/Mb)
isolating their respective types as in Lemma II.4.7. Let λ(x, b,m) be the formula

∃y∃zψα(y, x,m) ∧ ψβ(z, b,m) ∧ y + z ∈ P,

we have λ(x, b,m) ∈ tp∃(a/Mb).
Suppose that a′ |= λ(x, b,m), and assume towards contradiction that a′ |⌣

w

M
b.

Let A′ = M(a′), from a′ |⌣
ACF

M
b we get A′ ∩ B = M . Let α′, β′ witness

the existence in λ(a′, b,m), that is α′ |= ψα(y, a
′,m), β′ |= ψβ(z, b,m), and

s′ := α′+β′ ∈ P . We have β′ ≡∃
Mb β, in particular β′ ∈ B and β′ /∈M +P ∩B,

and by the “furthermore” part of Lemma II.4.7, we can assume that α′ ∈ A′.
By weak independence, P ∩ (A′+B) = P ∩A′+P ∩B, so there are α′′ ∈ P ∩A′,
β′′ ∈ P∩B such that s′ = α′′+β′′. It follows that α′′−α′ = β′−β′′ ∈ A′∩B =M ,
but then β′ = α′′ − α′ + β′′ ∈M + (B ∩ P ), a contradiction.

Remark II.4.9. In a recent paper [DK21], Dobrowolski and Kamsma general-
ized the notion of Kim-independence to positive logic, which is a more general
context than the one we deal with. They also prove that the independence
relation defined on exponential fields in [HK21b] to prove NSOP1 is actually
Kim-independence. A similar strategy as the one in [DK21, §10.2] seems to
yield that |⌣

w is Kim-independence: extension and transitivity of |⌣
w are sim-

ilar to [dE21a, Theorem 1.4] and the fact that FR-module is Hausdorff follows
from Theorem II.3.9.

II.5 Higher amalgamation of strong independence
In the previous section, we used the weak independence defined in [dE21b,
Definition 3.1]. In the above cited definition, another independence called strong
independence was defined. Strong independence is less useful for us in the study
of NSOP1, because the proof of strong finite character does not work for strong
independence, yet it still has properties worth studying. In this section we will
prove that strong independence has n-amalgamation for every n ≥ 3.

Note that in [HK21b], Haykazyan and Kirby defined a single independence
relation that had both strong finite character and n-amalgamation. This does
not seem to be the case in our situation.
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Definition II.5.1. For a model M |= ACFR-module, and subsets A,B,C ⊆M ,
say that A and B are strongly independent over C, and denote A |⌣

s

C
B, if

A |⌣
ACF

C
B and PM ∩ABC = PM ∩AC + PM ∩BC.

Lemma II.5.2. The following are a few model theoretic properties of strong
independence that we will use.

• (Algebraicity) If A |⌣C
B, then AC |⌣

s

C
BC.

• (Monotonicity) If A |⌣
s

C
BD, then A |⌣C

B.

Proof. Algebraicity is obvious from the definition, and from algebraicity of
|⌣

ACF. For monotonicity, suppose A |⌣
s

C
BD, from monotonicity of |⌣

ACF

we have A |⌣
ACF

C
B. We also get that

P ∩ (ABC) = P ∩ABDC ∩ABC
= (P ∩AC + P ∩BDC) ∩ABC
= P ∩AC + P ∩BDC ∩ABC
= P ∩AC + P ∩BC,

where the second equality is from the definition of strong independence, the third
equality is from Lemma II.3.1, and the last equality is from AB |⌣

ACF

BC
BDC,

which we get from base monotonicity of |⌣
ACF.

Notation II.5.3. A subset I ⊆ P(n) is called downward-closed if a ∈ I and
b ⊆ a imply b ∈ I.

For a P(n) (P−(n))-system F of fields with a sub-R-module, and I ⊆ P(n)
(P−(n)) non-empty downward-closed, let

FI =
⋃
a∈I

Fa

PI =
∑
a∈I

PFa

Also let F(a = FP−(a), and the same for P .

Lemma II.5.4. A P(n) (P−(n))-system M of ACFR-module is strongly in-
dependent iff it is |⌣

ACF-independent and for every a ∈ P(n) (P−(n)) and
I ⊆ P(a) non-empty downward-closed (if a ∈ I and b ⊆ a, then b ∈ I), we have
Pa ∩MI = PI .

Proof. For the left to right direction, suppose M is strongly independent. The
proof is by induction on |I|. If |I| = 1, then we must have I = {∅}, so this
case is trivial as Pa ∩M∅ = P∅. If |I| > 1, then take a maximal b ∈ I and let
I ′ = I\{b}, which is also non-empty downward-closed. By strong independence,
Mb |⌣

s

M(b

⋃
b̸⊆c⊆aMc. For every c ∈ I ′ we have b 6⊆ c ⊆ a, so by monotonicity

and algebraicity (Lemma II.5.2) Mb |⌣
s

M(b
MI′ . It follows that

Pa ∩MI = Pa ∩MbMI′

= (Pa ∩Mb) + (Pa ∩MI′)

= Pb + PI′ = PI ,
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where the second equality is from strong independence and the third equality is
from the induction assumption.

For the right to left direction, we need to prove Mb |⌣
s

M(b

⋃
b ̸⊆c⊆aMc. Con-

sider the downward-closed families I ′ = {c | b 6⊆ c ⊆ a} and I = I ′ ∪ {b}. With
this notation, We need to prove Mb |⌣

s

M(b
MI′ . By the assumption,

Pa ∩MbMI′ = Pa ∩MI = PI = Pb + PI′

= (Pa ∩Mb) + (Pa ∩MI′),

and we already know Mb |⌣
ACF

M(b
MI′ , so this finishes the proof.

Theorem II.5.5 (n-amalgamation). Any strongly independent P−(n)-system
of ACFR-module can be completed to a strongly independent P(n)-system.

Proof. Suppose M = (Ma)a∈P−(n) is a strongly independent P−(n)-system of
ACFR-module. By Proposition A.1.3, there is a field Mn completing M as an
independent system of ACF. Define Pn := P(n =

∑
s(n Ps, we need to show

that (Mn, Pn) completes a strongly independent system. For this we will need
the following claim:

Claim. For every I, J ⊆ P(n) non-empty downward-closed, MI ∩ PJ ⊆ PI .

Suppose we proved this claim. For every a ∈ P(n), if we take I = P(a)
and J = P(n), then we will get Ma ∩ Pn ⊆ Pa, and the other inclusion is
obvious, so (Mn, Pn) completes a system of ACFR-module. Taking J = P(a) and
I ⊆ P(a), we’ll get MI∩Pa ⊆ PI , and again the other inclusion is obvious, so by
Lemma II.5.4 the system is strongly independent. All that remains is proving
the claim.

We will prove the claim by induction on |IJ |. The base case is |IJ | = 1,
which must mean I = J = {∅}, which is trivial. In the general case, first notice
that if J = P(n), then PJ = Pn = PP−(n), so without loss of generality we can
assume J ⊆ P−(n). If J ⊆ I, then it is also trivial, else take some maximal
c ∈ J such that c /∈ I, and consider J ′ = J \ {c}, which is also non-empty
downward-closed.

We have PJ = Pc + PJ′ , so we need to prove that MI ∩ (Pc + PJ′) ⊆ PI .
Suppose pc + pJ′ ∈ MI ∩ (Pc + PJ′) for pc ∈ Pc, pJ′ ∈ PJ′ . In particular, pc ∈
MIJ ′ . Remember that MIJ ′ =

⋃
a∈IJ ′ Ma, so there is a tuple m ∈

⋃
a∈IJ ′ Ma

such that q(pc,m) = 0 for some non-zero polynomial q(x,m). By Fact II.2.12,
there is a tuple m′ ∈

⋃
a∈IJ ′ Ma∩c such that q(pc,m′) = 0 and q(x,m′) is a

non-zero polynomial. Let K = {a ∈ IJ ′ | a ⊆ c} = {a ∩ c | a ∈ IJ ′}, we get
that pc ∈ MK . By Lemma II.5.4, Pc ∩ MK = PK ⊆ PIJ ′ , so pc ∈ PIJ ′ .
Also, pJ′ ∈ PJ′ ⊆ PIJ ′ , so pc + pJ′ ∈ PIJ ′ . We know that c /∈ IJ ′, so in
particular |IJ ′| < |IJ |, and by the induction hypothesis MI ∩PIJ ′ ⊆ PI . Thus,
pc + pJ′ ∈ PI , as needed.
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Appendix A

Results on higher
amalgamation

Our definition of independent systems, which we borrowed from [HK21b], is
not the same the one used by other authors, e.g. [Hru98, dPKM06, GKK13].
It follows that our notion of n-amalgamation is different from the one used in
those papers, and adapting results from one definition to another is not trivial.
In this appendix we prove well known results about higher amalgamation, using
our definition.

A.1 Higher amalgamation of ACF
Under the common definition, ACF has n-amalgamation for every n. More
generally, [dPKM06, Proposition 1.6] proves that any stable theory has n-
amalgamation over a model for all n. In this section we prove that ACF has
n-amalgamation per our definition.

First, recall that for fields A,B,C such that C ⊆ A ∩ B, we say that A is
linearly disjoint from B over C, and denote A |⌣

l

C
B, if whenever a0, . . . , an−1 ∈

A are linearly independent over C they are also linearly independent over B.
Equivalently, A is linearly disjoint from B over C iff the canonical map A⊗B →
A[B] is an isomorphism. In particular, if A |⌣

l

C
B and we have maps f : A→ K

and g : B → K (for some field K) such that f |C = g|C , then we can jointly
extend them to a map A.B → K. For more information, see Section I.2 or
[Lan72, §III.1.a].

Lemma A.1.1. Let F = {Fa}a∈P(n) be an independent P(n)-system of ACF,
where all embeddings are subset-inclusions. Suppose a, b0, . . . , bk−1 ⊆ n, then

Fa
l

|⌣
Fa∩b0

...Fa∩bk−1

Fb0 . . . Fbk−1
.

Proof. Suppose
∑
i αiβi = 0 for αi ∈ Fa and βi ∈ Fb0 . . . Fbk−1

. We can write
βi = qi(βi,0, . . . , βi,k−1) for βi,j ∈ Fbj and qi a rational function. By Fact II.2.12,
there exist γi,j ∈ Fa∩bj such that

∑
i αiqi(γi,0, . . . , γi,k−1) = 0. Denote

γi = qi(γi,0, . . . , γi,k−1) ∈ Fa∩b0 . . . Fa∩bk−1
,
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we have
∑
i αiγi = 0 as needed.

Lemma A.1.2. Let F = {Fa}a∈P(n) (n > 0) be an independent P(n)-system
of ACF, where all embeddings are subset-inclusions. Suppose K is another field,
and for every a ⊊ n there is an embedding τa : Fa → K, such that τa|Fb

= τb
for b ⊆ a ⊊ n. Furthermore, suppose that T is a transcendence basis of Fn over⋃
a(n Fa and that S ⊆ K is algebraically independent over

⋃
a(n τa(Fa) with

|S| = |T |. Then there exists an embedding τn : Fn → K such that τn|Fa
= τa

for a ⊆ n and τn(T ) = S.

Proof. For i, j < n, denote î = n \ {i} and î, j = n \ {i, j}. We will build by
induction maps σm : F0̂ . . . Fm̂−1

→ K such that σm|Fî
= τ̂i for i < m ≤ n. For

m = 1, set σ1 to be τ0̂. Suppose we defined σm, by Lemma A.1.1

Fm̂
l

|⌣
F0̂,m...Fm̂−1,m

F0̂ . . . Fm̂−1
.

Furthermore, for every i < m

τm̂|F
î,m

= τî,m = τ̂i|Fî,m
= σm|F

î,m
,

so τm̂ and σm coincide on the base of the independence. Thus, there exists a
map σm+1 : F0̂ . . . Fm̂ → K such that σm+1|F0̂...Fm̂−1

= σm and σm+1|Fm̂
= τm̂.

Once we built σm for every 1 ≤ m ≤ n, extend σn : F0̂ . . . Fn̂−1
→ K to

an embedding τn : Fn → K by mapping T to S and extending to the algebraic
closure.

Proposition A.1.3. ACF has n-amalgamation for every n, with respect to
non-forking independence.
Proof. Let F = {Fa}a∈P−(n) be an independent P−(n)-system of ACF with
embeddings τb,a : Fb → Fa for b ⊆ a. For every ∅ ⊊ a ⊊ n, let Ta be a
transcendence basis of Fa over

⋃
b(a τb,a(Fb). By induction on |a|, it follows

that
Fa = τ∅,a(F∅)(

⋃
∅(b⊆a

τb,a(Tb)).

Let Fn be some algebraically closed field extension of F∅, with a large enough
transcendence degree over F∅. Let {Sa}∅(a(n be some disjoint family of subsets
of Fn such that |Sa| = |Ta| and

⋃
∅(a(n Sa is algebraically independent over F∅.

We will extend F to a P(n)-system by defining embeddings τa,n : Fa → Fn for
all a ⊊ n. The embeddings τa,n will be built by induction on |a|.

For a = ∅, define τ∅,n : F∅ → Fn to be the inclusion map. For a 6= ∅,
suppose we built τb,n for every b ⊊ a. Consider {τb,a(Fb)}b⊆a as an independent
P(a)-system (where the embeddings are subset-inclusions). By Lemma A.1.2,
there exist an embedding τa,n : Fa → Fn such that τa,n ◦ τb,a = τb,n for b ⊊ a
and τa,n(Ta) = Sa.

This completes F to a P(n)-system, it remains to prove independence. Con-
sider all {Fa}a(n as subsets of Fn by taking their image under τa,n. No-
tice that by the way we defined τa,n (specifically, because τ∅,n(F∅) = F∅ and
τa,n(Ta) = Sa), we have that after taking the image under τa,n

Fa = F∅(
⋃

∅(b⊆a

Sb).
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We need to prove that for every a ⊆ n

Fa
ACF

|⌣⋃
b(a Fb

⋃
a̸⊆c⊆n

Fc,

which is the same, up to taking algebraic closures, as

F∅(
⋃

∅(d⊆a

Sd)
ACF

|⌣
F∅(

⋃
∅(b(a Sb)

F∅(
⋃

a̸⊆c⊆n

Sc).

This follows from the fact that Sa is algebraically independent over F∅(
⋃
a ̸⊆c⊆n Sc).

A.2 The independence theorem
It is a well known fact in the folklore that the independence theorem is equivalent
to 3-amalgamation. In our case there are two differences, the definition of 3-
amalgamation is different and we work in the category of existentially closed
models. We reprove this equivalence in our setting.

Proposition A.2.1. Let M be a monster model of an inductive theory T with
JEP. Suppose that there is an ternary relation |⌣ on subsets of M satisfying
invariance, existence, monotonicity, symmetry, and extension. For M ∈ EC(T ),
the following are equivalent:

1. (3-amalgamation) every independent P−(3)-system of EC(T ) over M can
be completed to an independent P(3)-system of EC(T ) (a system F is over
M if F∅ =M).

2. (strengthened independence theorem) for tuples c1, c2, b1, b2 such that c1 |⌣M
c2,

b1 |⌣M
c1, b2 |⌣M

c2 and b1 ≡∃
M b2, there exists b such that b ≡∃

Mc1
b1,

b ≡∃
Mc2

b2, and b |⌣M
c1c2, bc1 |⌣M

c2, bc2 |⌣M
c1.

Proof. (1) =⇒ (2): We can find existentially closed models C1, C2 ∈ EC(T )
such that Mci ⊆ Ci (i = 1, 2) and C1 |⌣M

C2 — start with some Mc1 ⊆ C1 ∈
EC(T ), and using extension and invariance move it by an automorphism fixing
Mc1 so that C1 |⌣M

c2, then do the same with some Mc2 ⊆ C2 ∈ EC(T ). By
extension, we can find b′i ≡∃

Mci
bi (i = 1, 2) such that b′i |⌣M

Ci. Note that

b′1 ≡∃
M b1 ≡∃

M b2 ≡∃
M b′2.

We can find existentially closed models Mb′i ⊆ Bi ∈ EC(T ) such that B1 ≡∃
M B2

and Bi |⌣M
Ci (i = 1, 2) — start with some Mb′1 ⊆ B1 ∈ EC(T ), as before use

extension and invariance to assume B1 |⌣M
C1, then let B2 be the image of B1

under an automorphism given by b′1 ≡∃
M b′2, by extension and invariance we can

move B2 by an automorphism fixing Mb′2 such that B2 |⌣M
C2.

Let N0, N1, N2 ⊆ M be some existentially closed models such that C1, C2 ⊆
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N0, C1, B1 ⊆ N1 and C2, B2 ⊆ N2, and consider the P−(3)-system

N0 N1 N2

C1 C2 B1

M

σ

where all the arrows are inclusions, except for σ which maps B1 to B2, fixing
M . The above system is independent, so it can be completed to an independent
P(3)-system

N

N0 N1 N2

C1 C2 B

M

τ0 τ1
τ2

σ

We can expand N to the monster M, and by Remark II.2.16 we can expand
τ0, τ1, τ2 to automorphisms of M. By applying τ−1

0 to M, we can assume that
τ0 is the identity

M

N0 N1 N2

C1 C2 B

M

τ1
τ2

σ

Let b = τ1(b
′
1) = τ2(b

′
2). By following the diagram, we see that τ1 fixes Mc1 and

τ2 fixes Mc2, so
b ≡∃

Mc1 b
′
1 ≡∃

Mc1 b1,

b ≡∃
Mc2 b

′
2 ≡∃

Mc2 b2.

The independences we need to show follow from the fact that the system is
independent (using monotonicity).

(2) =⇒ (1): For the other direction, let F be an independent P−(3)-system
over M . We will show that all but one of the embeddings can be assumed to be
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inclusions:
F{01} F{02} F{12}

F{0} F{1} F{2}

F∅

σ

Start by replacing F∅, F{0}, F{1} with their images in F{01}. Now move F{02}
so that the embedding F{0} → F{02} would be an inclusion (the system stays
independent by invariance), and replace F{2} with its image in F{02}. Finally,
move F{12} so that the embedding F{1} → F{12} would be an inclusion. We are
left only with F{2}

σ−→ F{12}, which we can’t assume to be an inclusion.
Recall that M = F∅, and consider c1 = F{0}, c2 = F{1}, b1 = F{2} and

b2 = σ(b1) as tuples. The conditions for the independence theorem hold from
the independent system, so there is some b satisfying b ≡Mc1 b1, b ≡Mc2 b2,
b |⌣M

c1c2, bc1 |⌣M
c2 and bc2 |⌣M

c1. There are automorphisms τ1, τ2 such
that τ1 : b1c1 7→ bc1, τ2 : b2c2 7→ bc2, so the following diagram commutes:

M

F{01} F{02} F{12}

F{0} F{1} F{2}

F∅

τ1
τ2

σ

We have b |⌣M
c1c2, so by extension, by possibly changing b and thus also

changing τ1, τ2 while fixingMc1c2, we have b |⌣M
F{01}, which is F{2} |⌣F∅

F{01}.
We also know bc1 |⌣M

c2, so by extension, possibly changing τ1, we get F{02} |⌣F∅
F{1}.

Similarly, we get F{12} |⌣F∅
F{0}. Next, by existence, F{0}F{1} |⌣F{0}F{1}

F{02}F{12},
so by extension and changing F{01} (really, its embedding into M) we get that
F{01} |⌣F{0}F{1}

F{02}F{12}. The same can be done with F{02} |⌣F{0}F{2}
F{01}F{12}

and F{12} |⌣F{1}F{2}
F{01}F{02}. Notice that the automorphisms we take pre-

serve F{0}F{1}F{2}, so they preserve the independences already established.
This gives us an independent P(3)-system that completes the given indepen-
dent P−(3)-system.
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