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Abstract

The thesis is split into two chapters.

The first chapter is concerned with the model-theoretic study of pairs (K, F')
where K is an algebraically closed field and F' is a distinguished subfield of K
allowing extra structure. We study the basic model-theoretic properties of those
pairs, such as quantifier elimination, model-completeness and saturated models.
We also prove some preservation results of classification-theoretic notions such
as stability, simplicity, NSOP;, and NIP. As an application, we conclude that a
PAC field is NSOP; iff its absolute Galois group is (as a profinite group).

The second chapter deals with the class of existentially closed models of
fields with a distinguished submodule (over a fixed subring). In the positive
characteristic case, this class is elementary and was investigated by d’Elbée in
[dE214]. Here we study this class in Robinson’s logic, meaning the category
of existentially closed models with embeddings following Haykazyan and Kirby,
and prove that in this context this class is NSOP; and TPs.
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Chapter 1

Algebraically closed fields
with a distinguished
subfield

1.1 Introduction

In their study of pseudo-algebraically closed fields, or PAC fields (known at that
time as regularly closed fields, for obvious reasons, see Definition ) Cherlin,
van den Dries and Macintyre [CvdDMS80, CvdDM81] described elementary in-
variants for those fields. This was inspired by the work of Ax on pseudo-finite
fields. Among those invariants is the elementary theory of the absolute Galois
group of those fields in a suitable omega-sorted language, called the inverse
system_of the absolute Galois group. It was already clear to the authors of
[CvdDM80, CvdDMS81] that this invariant is an essential tool for the study of
PAC fields. The intuition that the model theoretic complexity of the theory of
PAC fields is mainly controlled by the theory of its absolute Galois group was
confirmed by numerous results since then. For example, Chatzidakis [Chal9]
proved that if the inverse system of the absolute Galois group of a PAC field
is NSOP,, (n > 2), then so is the theory of the field. Ramsey [Ram1g] proved
the corresponding results for NTP; and NSOP;. It is a fact that the inverse
system of the absolute Galois group of a field F' is interpretable in the theory
of the pair (K, F)) for any algebraically closed field K extending F' (see [Cha02,
Proposition 5.5]). This motivated our interest in the model-theoretic study of
such pairs (K, F).

The model-theoretic study of pairs of fields goes back to Tarski when he
raised in [Tar51] the question of the decidability of the pair (R, R N Q*#) (the
reals with a predicate for the reals algebraic over Q). The (positive) answer was
given by Robinson in [Rob59], who gave a full set of axioms for the theories of
(R,R N Q&) and (C,Q*8). The celebrated work of Morley and of Shelah in
the 70’s created a growing interest in classification of first-order theories, and
in particular of theories of fields and their expansions. It was known in the 80’s
that the theory of (C, Q) is stablell and Poizat [P0i83] generalized this result

1See the first sentence of [Poi83].



to a more general context: he gave a criterion for the stability of special pairs of
elementary substructures N = M (called “belle paires”), under a strong stability
assumption on the theory of M (and N) called nfep, introduced by Keisler
[Kei67]. This was later generalized to the context of simple theories [BYPVO03]
with the notion of lovely pairs. Back to algebraically closed fields, Delon [Dell2]
introduced a language for quantifier elimination for pairs of algebraically closed
fields and pairs of algebraically closed valued fields. Recently, Martin-Pizarro
and Ziegler [MPZ20] proved that the theory of proper pairs of algebraically
closed fields is equational, by a deep analysis of definable sets.

As was mentioned above, the main topic of this chapter is another general-
ization of pairs of algebraically closed fields, which are pairs (K, F') where F is
an arbitrary field, perhaps with some extra structure (in a language extending
the language of fields), and K D F' is an algebraically closed infinite extension.
An early result about this theory was given by Keisler [Kei64]: if F' and F’ are
two elementarily equivalent fields (not real-closed nor algebraically closed and
without extra structure), then the pairs (K, F') and (K', F’) are also elemen-
tarily equivalent, for any algebraically closed extensions K D F, K/ D F’. In
[HKR1§], Hils, Kamensky and Rideau gave a quantifier elimination result for
the theory of the pairs (K, F), which we also obtain in Theorem . We were
not aware of this result while writing the proof and we decided to keep our proof
for completeness.

The purpose of this chapter is twofold. For one, we are interested in the ba-
sic properties of the theory of the pairs such as saturated models, completeness,
quantifier elimination and model-completeness. For example, as we mentioned
above we prove quantifier elimination for the theory of pairs (K, F') (see The-
orem [[.4.3) in a natural expansion of the language following Delon’s approach
[Dell2]. This allows us to isolate a condition implying the model-completeness
of the theory of the pair (K, F) which is weaker than the model complete-
ness of the theory of F' (see Theorem ) Secondly, we prove preservation
of several classification-theoretic properties: if the theory of F is (w-/super)
stable/NIP /simple/NSOP, then so is the theory of the pair (K. F) (see Corol-
laries and and Theorems m, i.5.li m and [.5.34). In the case
of NSOP;, we also identify Kim-independence for algebraically closed sets (see
Proposition )

As immediate applications we conclude that the theory of a PAC field F
in the language of rings is NSOP; iff the theory of its Galois group is (see
Proposition ) and prove that when F' is pseudofinite in the language of
rings the theory of the pair (K, F') is simple. In addition, we consider the theory
ACF! of a chain of algebraically closed fields ordered by some linear order I, and
discuss its properties depending on the order type of I (see Proposition )

1.2 Preliminaries

In this section we present common definitions and results from fields and model
theory. We will start by setting up some basic notation for the whole paper.

Notation 1.2.1. Whenever A is a field, let A be its algebraic closure. Whenever
A and B are subfields of a larger field, let A.B be their field compositum. If A is
a field and S is a set, then let A(S) be the field extension of A by the elements of
S. Say that the set S is algebraically independent over A if each element s € S



is algebraically independent over A(S\ {s}). If R is a sub-ring of a larger field,
then denote by Frac(R) the field generated by R. Unless specified otherwise, all
the fields will be subfields of a large algebraically closed field.

1.2.1 Linear disjointness
Definition 1.2.2. Let A, B and C be fields with C C AN B.

1. Say that A is linearly disjoint from B over C if whenever ag,...,a,—1 € A

are linearly independent over C' they are also linearly independent over B.
Denote this by A J/ZC B.

2. Say that A is algebraically disjoint from B over C' if whenever aqg, ..., a,_1 €
A are algebraically independent over C, then they are also algebraically
independent over B. This is the same as the non-forking independence in
ACF, which we will denote A | 2°" B.

Fact 1.2.3 ([Mor96, Proposition 20.2]). Let A, B and C be fields with C C ANB.
Construct a map A @c B — A[B] by mapping a @ b — ab. This map is an

isomorphism iff A J/lc B.

Fact 1.2.4. The following is a list of useful model theoretic properties that J/l
has inside ACF. Let A, B, C, D, A’, B’ and C' be fields with C C AN B,
C'CA'NB" and BC D.

e (Invariance) if ABC = A’B'C" and A J/lc B, then A’ \LIC, B
e (Monotonicity) if A LZC D, then A J/lc B.

e (Base monotonicity) if A J/lc D, then A.B LZB D.

o (Transitivity) if A \LIC B and A.B J/; D, then A \LIC D.

o (Symmetry) if A |\, B, then B |\, A.

e (Stationarity) if A=c A’ and A | . B, A’ |\ B, then A=p A’
c c

e (Local character) for a finite tuple a, there exists a countable subfield
By C B, such that By(a) J/lBO B.

Proof. Invariance is trivial. Proofs for monotonicity, base monotonicity and
transitivity can be found in [FJ08, Lemma 2.5.3], symmetry is proven in [FJOS,
Lemma 2.5.1]. Stationarity follows directly from Fact and quantifier elim-
ination in ACF.

Local character follows from [Lan72, Theorem III.7, Proposition II1.6 and
Theorem II1.8], by setting By to be the field of definition of the locus of a over
B. This gives an even stronger result, as By is finitely generated and not merely
countable. For a more direct proof of local character, see Remark . O

Corollary 1.2.5. Let Ao, Bo, C(), Al, Bl and Cl be ﬁelds with Co Q Ao n Bo,
C1 C A N By, such that Ag LZCO By, Ay J/lcl By. Suppose there are isomor-
phism f: Ao — A1, g : By — By such that f|c, = glc,- Then there is a unique
isomorphism F : Ag.By — A1.By such that Fla, = f, Flp, = 9-



Proof. Consider Ag, A1, By and Bj as tuples, such that f and g match the tu-
ples. Extend g to an automorphism o arbitrarily. From invariance, by applying
o to Ag \LZCO By, we get o(Ap) \Llcl Bj. From stationarity o(Ag) =p, A1, let 7
be an automorphism witnessing the equivalence. Let F' = (7 00)|4,.5,, We have
F(Ap) = 1(0(Ag)) = A1 and F(By) = 7(0(By)) = 7(B1) = B; as tuples. In
particular, F' : Ag.By — A1.B; is an isomorphism, and from the way we chose
the tuples F|4, = f and F|p, = g. O

Definition I1.2.6. A field extension A C B is called:
o regular if A J/i‘ B,

o separable if AV/P JjA B, where p = char(A4) > 0 and A'/? is the field of
p-th roots of all elements in A (if char(A) = 0, then all extensions are
separable), and

o relatively algebraically closed if AN B = A.
Fact 1.2.7. Suppose A C B is a field extension.

1. [FJ0&, Lemma 2.6.4] The extension A C B is reqular iff it is separable
and relatively algebraically closed.

2. [FJ08, Lemma 2.6.7] If the extension A C B is reqular and C is a field

extending A such that B \LZ‘CF C, then B J/ZA C.

Lemma 1.2.8. If A C B is a reqular field extension and o : B — B’ is an
isomorphism of fields, then o(A) C B’ is regular.

Proof. We can extend o to the algebraic closure, 5 : B — B’. From A J/lA B we
’. But 5(A) = o(A), so we have o(A) J/Z(A) B’
O

get by invariance 6(A) LZ(A) B

as needed.

Lemma 1.2.9. If A C B is a reqular field extension and S is a set algebraically
independent over B, then A(S) J/ZA B.

Proof. As S is algebraically independent over B, we have A(S) iCF B. Fact (2)
implies that A(S) J/il B. O

1.2.2 Language of regular extensions

In [Mac08], Macintyre defines relations in the language of rings that are pre-
served in a field extension iff it is regular. We will present those relations,
and use them to expand a theory of fields® in such a way that the models are
the same but for any two models M, N, N extends M iff it is a regular field
extension.

Fact 1.2.10 ([Mac08, §4.7]). Let A C B be a field extension.

1. The extension is relatively algebraically closed iff it preserves the relations
Sol, (zg, .-y Tp_1) = y(zo + 219+ -+ 219" L +y" =0) forn > 1.

2By a theory of fields, we mean a theory in a language expanding the language of rings
which contains all the fields axioms.



2. For p = char(A), the extension is separable iff it preserves the relations
Dn,p(-rOy ey (Enfl) = 31/07 cee 7yn71(ygx0 + -t yﬁflxnfl = O) fOT’ n > 1
(note that if p =0, D,,, is quantifier-free definable).

Corollary 1.2.11. Suppose M and N are fields. If M < N, then M C N is a
reqular extension.

Proof. The fact that M < N implies in particular that M C N is a field exten-
sion that preserves Sol,, and D,, , (p = char(A4)). By Fact the extension
M C N is relatively algebraically closed and separable, so by Fact (1) it is
a regular extension. O

Definition I.2.12. Let T be a theory of fields in a language L expanding the

language of rings. Define Lo = LU{Sol,}, ;U {Dn_p} o where
= “ Jn>1,pePrimesU{0

Sol,,, Dy, are n-ary relations, and extend 7" to Tieg in Lyeg by defining Sol, as
above and defining

Lemma 1.2.13. Let T be a theory of fields and let Q,R E T with @ C R
a substructure. By adding definable relations, Q@ and R can be expanded to
models of Treg. Then @ is an Lycg-substructure of R iff Q@ C R is a regular field
extension.

Proof. Let p = char(Q). Note that by Facts and , it is enough to
prove that @ is an L,¢s-substructure of R iff the extension @) C R preserves Sol,,
and D, ;, for all n. Indeed, this equivalence holds because Dn,p is equivalent to
D,, , and Dn,q is trivially false for any prime g # p. O

1.2.3 NSOP,

In this subsection we will review the definition and basic properties of NSOP;
theories.

We will work in a monster model M (large, saturated) of a complete theory
T.

Definition 1.2.14. A formula ¢(x;y) has SOP; if there is a tree of tuples
(by)ne2<w such that

o forall n € 2%, {¢(x;bya) | @ < w} is consistent,
o forallnpe 2<% if vy ~ (0), then {¢(z;b,), (b; a,— (1)} is inconsistent.

We say that a theory T is SOP; if some formula has SOP; modulo T'. Otherwise,
T is NSOP;.

Definition 1.2.15. Let A be a set and a and b tuples, say that a is coheir
independent of b over A if the type tp(a/Ab) is finitely satisfiable in A, and
denote a LZ b. A sequence (a;);cs is an A-indiscernible coheir sequence if it is
A-indiscernible and a; | %) a<i

Using coheir-independence, we can use a different criterion for NSOPq, due
to [CR16, Theorem 5.7].



Fact 1.2.16 (Weak independent amalgamation). The theory T is NSOPy iff
given any model M = T and tuples agby =pr a1by such that by J/;& bo and
b; \qu& a; fori=0,1, there exists a such that aby =p; aby =pr agbp-

Kim-dividing, and its extension Kim-forking, were defined in [KR20], over
arbitrary sets. For our purposes we will give a simplified definition, which we
will call Kim"-dividing, and define it only over models.

Definition 1.2.17. A formula ¢(z,b) Kim*-divides over a model M if there
exists an M-indiscernible coheir sequence (b;);<, with b =p; b;, such that
{o(x,b:)},.,, is inconsistent. A formula Kim"-forks over M if it implies a dis-
junction of Kim“-dividing formulas over M.

A type Kim"-divides (Kim“-forks) over M if it implies a Kim*-dividing
(Kim*-forking) formula over M. Denote a J/Z b when the type tp(a/Mb) does
not Kim"-fork over M.

Remark 1.2.18. In this definition, (b;);<. is a Morley sequence in a restriction
of a global coheir type. In the original definition of Kim-dividing, the global
coheir type_is replaced with a global invariant type. By Kim’s lemma for Kim-
dividing [KR20, Theorem 8.16], those definitions are equivalent for NSOP;
theories.

Remark 1.2.19. The type tp(a/MDb) does not Kim"-divide over M iff for every
M -indiscernible coheir sequence (b;)i<., with b =pr b;, there exists a’ such that
ab = a'b; for every i < w.

Fact 1.2.20. Suppose T is NSOPy, then

1. [KR2(, Theorem 8.16] If ¢(x,b) Kim-divides over M =T, then for every
M -indiscernible coheir sequence (b;)i<, with b =pr by, {d(x,b;)} is
inconsistent.

<w

2. [KR20, Proposition 3.19] Kim-dividing is equivalent to Kim-forking over
models.

3. [KR20, Theorem 5.16] | ™ is symmetric over models.

4. [KR20, Corolary 5.17] Let M = T, aj/ﬁb <~ acl(a) L;b =

K

a L, acl(d).

5. [KR20, Proposition 8.8] T is simple iff \LK satisfies base monotonicity
over models: if M,N =T and M C N, then a J/Z Nb implies a \LI; b.

6. |[KR20, Proposition 8.4] T is simple iff | = |/ over models.

I.3 Basic properties of ACF

In this section we will define and study the basic properties of ACFp, the
theory of algebraically closed fields with a distinguished subfield (in an arbitrary
language). We will also consider expansions of the theory by definable relations
and functions, that Delon defined to study pairs of ACF in [Dell2].



1.3.1 Delon’s language

Definition 1.3.1. Let T be a theory of fields (not necessarily complete), in a
language expanding the language of rings L D Lyings. Expand L to the language
LY = LU {P}, with P a unitary predicate, and expand ACF to ACFr in the
language LT by adding the following axioms:

1. P is a model of T. This can be achieved by taking all the axioms of T
and restricting the quantifiers to be over P.

2. For every n-ary function symbol f € L\ Lyings, if zo,...2p—1 € P, then
f(zo,...,xn_1) € P. Else, if some x; ¢ P, then we do not care about the
value of f(xo,...,x,—1), and we can set it arbitrarily to 0.

3. For every n-ary relation symbol R € L \ Lyings, if some x; ¢ P, then
—R(xg,...,Zn-1). That is, R C P™.

4. The degree of the field extension of the whole model over P is infinite,
i.e. the model has infinite dimension as a vector space over P. By the
Artin-Schreier theorem [AS27], it is enough to assert that the degree is at
least 3.

Remark 1.3.2. The assumption that the degree of the model over P is infinite,
that is, for M |= ACFr, [M : Py = oo, always holds when models of T are
not algebraically closed or real closed, because in that case [m : Py = oc.
When models of T are algebraically closed, it simply means that M # Py, i.e.
(M, Pyr) is a proper pair. The only case excluded is when models of T are real
closed and M = Py, but then (Pyr, Pyr) is definable in Pyy.

Definition 1.3.3. Let T, L be as above. Consider the following definable
relations and functions over ACFr:

o For n > 1, define the n-ary relation ,, by {,,(zo,...,zn-1) iff g,...,Tpn_1
are linearly independent over P.

o For n > 1, suppose we have I, (zg, ..., 2n—1) and =11 (20, ..., z,). That
is, xg,...,Tn—1 are linearly independent over P and x, is in their span
over P. Then, there are unique y; € P such that x, = yoxo + -+ +
Yn—1Zn—1. Define the n+1-ary function f,, ; by foni(@n; o, ..., Tn-1) = ¥i.
If g, ..., x, do not satisfy this condition, then we do not care about the
value of fp, i(zn;%o,...,Tn—1) and can set it arbitrarily to 0.

Expand ACFr to ACFY in the language L4 = L¥ U {ln},>1, by defining I,
as above. Expand ACFle to ACF% in the language LY = L' U {f,.;} by
defining f,, ; as above.

Notation 1.3.4. If M |= ACFr, then let Py be the predicate P in M with
the associated L-structure. If A C M is a subset, then let P4 = Py N A. This
notation is used instead of the usual P(M) and P(A), because the notation P(A)
is reserved for the field extension of P by A.

Definition 1.3.5. Call a formula ¢(z) € LY bounded if every quantifier in ¢ is
over P.

n>i>0

Remark 1.3.6. For a formula ¢(x) € L there is a corresponding bounded
formula ¢¥ (x) € LY created by restricting every quantifier to be over P and
asserting x € P. For M |= ACFr, we have ¢ (M) = ¢(Pyr).
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1.3.2 Substructures and isomorphisms

Lemma 1.8.7. Let M |= ACF? and A C M a subset. Then A is an L7-
substructure iff Pa C Py is an L-substructure, A is a subring, P4 is a subfield
and Frac(A) \LIPA Py

Proof. Suppose A C M is an Lf-substructure. We get that P4 C Py is an L-
substructure, because for any function symbol f € L and @ € Py, f(a) € A as
A C M is a substructure, and also f(@) € Py because of the axioms of ACFp,
so f(a) € AN Py = Pa. Tt is clear that A is a subring, and so is P4, but for
every 0 # a € Py, a” ! = f1,0(1;a) € P4, so Py is also a subfield. By [Lan72,
Chapter III, Criterion 1], to prove that Frac(A) \LIPA Py, it is enough to show
that if ag,...,a,_1 € A are linearly dependent over Py, then they are linearly
dependent over P4. Suppose ag,...,a,_1 € A are linearly dependent over P);.
If ag = 0, then the tuple is trivially linearly dependent over P4. Else, there is
some maximal 1 < k < n such that ag,...,arx—1 are linearly independent over
Py, so we have = I (ag, .., ax—1) and = —lgy1(ag, ..., a;). Hence we can look
at p; = fr.i(ak;ao,...,ak—1) € Py, which give us ar, = poao + -+ + Pr—1ak—1.
Because A is a substructure, p; € A, so p; € Pa. Thus, ag, . ..,a,_1 are linearly
dependent over Pjy.

In the other direction, suppose A is a subring, P4 is a subfield, P4 C Py, is
an L-substructure and Frac(A) \LIPA Pys. Tt follows that Frac(A) N Py = Pa,
and in particular A N Pyy = P4. For any function symbol f € L\ Lyings
and ag,...,an—1 € A, if ag,...,an—1 € Pa, then f(ag,...,an—1) € P4 as
P4 C Py is a substructure, and else we defined f(ag,...,an—1) =0 € A. Tt
remains to check that A is closed under f, ;. Let aog,...,a, € A and suppose
E (a0, .. an-1), = “lnt1(ao, -, an). Let p; = frni(an;ag, ..., an—1), that is
pi € Py and a,, = poag + - -+ + pp—1an—1. We know that ag,...,a, are linearly
dependent over Py, so by Frac(A) LZPA Py, they are linearly dependent over
P4. However, ag,...,a,—1 must be linearly independent over P4, as they are
linearly independent over Py, so a, can be written as a linear combination of
ag,...,an_1 over Py. This linear combination is in particular over Pp;, but
an = poao + - + Pn_1an_1 is the unique linear combination over Py;, so we
must have pg,...,pn—1 € P4, as needed. O

Corollary 1.3.8. If M ACF; and A C M is an Lf-substructure, then
Frac(A) C M is an L7 -substructure with Prrac(a) = Pa.

Proof. Lemma implies that Frac(A) J/lPA Py, and in particular Pryac(a) =

Pyr NFrac(A) = Pa. Thus, Prrac(a) € Par is a subfield and an L-substructure,

Frac(A) is a subring (even subfield) and Frac(A) J/i) " Py, so by Lemma
Frac(A

Frac(A) C M is an L7-substructure. O

Lemma 1.3.9. Let M, N | ACF; and let AC M, B C N be L -substructures.
A map o : A — B is an L -isomorphism iff o is an isomorphism of rings such
that o(Pa) = Pg and o|p, : Po — Pp is an L-isomorphism.

Proof. If o is an L{ isomorphism, then it is clearly an isomorphism of rings,
o(P4) = Pp because o preserves P and o|p, : P4 — Pp is an L-isomorphism
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because L expands L on P. For the other direction, we need to show that o pre-
serves Iy, fni. Let ag,...,an—1 € A with = 1,,(ag, ..., an—1). Suppose we have
E —l.(o(ag),...,0(an-1)), i.e. o(ag),...,0(an—1) are linearly dependent over
Pp. Lemma implies that Frac(B) \LZPB Py, so o(ag),...,0(a,—1) are also
linearly dependent over Pg. There are qo,...,qn,—1 € Pp such that gyo(ag) +
-+ +qn_10(an_1) = 0 By applying o~ we get 0~ (qo)ao+- - +0" (gn-1)an_1 =
0, however 0= 1(qo),...,0  (gn_1) € Pa, in contradiction to |= l,,(ag, ..., an_1).
The other direction follows from symmetry. Now suppose we have ag,...,a, €
A with = l,(ag,...,an—1) and E —ly41(ag,...,a,). By the first part, we
also have = l,,(0(ag),...,0(an—1)) and E —l,y1(o(ag),...,0(ay)). Let p; =
fnilan;ao,...,an_1) € Pa, an = poao + --- + pn_1an_1. Apply o to get
o(a,) =a(po)o(ag)+---+0(pn_1)o(an_1), but o(po),-..,0(pn_1) € Pp, so by
uniqueness o(p;) = fn.i(o(an);o(ao),...,o(an-1). O

Lemma 1.3.10. Let M, N = ACFr. By adding definable relations and func-
tions, M and N can be expanded to models of ACquﬂi, ACF;. With those
expansions, the following are equivalent:

1. M C N is an LY -substructure.
2. M C N is an L'¥-substructure.

8. M C N is a subfield, Pyy C Py is an L-substructure and M \LZPM Py.

Proof. 1 = 2: L' is a restriction of L7.

2 — 3: It is clear that M C N is a subfield and Py; C Py as sets. For
every quantifier free formula ¢(Z) € L and @ € Py, Py = ¢(a) <= M =
pla)Na e P < N E¢(@ANae€ P < Py ¢@),so Py isan L-
substructure of Py. Let ag,...,an,—1 € M be linearly independent over Py,
M El.(ag,...,an—1) = N El,(ao,...,an_1), 80 ag,...,a,—1 are linearly
independent over Py. Thus, M LlPM Py.

3 = 1: Let M’ be the L-structure with the same underlying set as M,
but with structure induced as a subset of N. Note that M’ C N is really an
L/-substructure, from Lemma .3.7. To prove that M is an L/ -substructure of
N, we need to show that M and M’ have the same structure, that is that the
identity map id : M — M’ is an Lf-isomorphism. We know that M is a subfield
of N, soid : M — M’ is a field isomorphism. From M JJZPM Py we get that
Py = MNPy = Py and Py is an L-substructure of Py, so id|pM : Py — Py
is an L-isomorphism. Lemma [.3.9 implies that id is an L/ -isomorphism. O

1.3.3 Saturated models

We will study saturated models of ACFr. Note that k-saturated models of
ACF7p are the same as s-saturated models of ACFY or ACF%, because {ln},4
and {fni}, 5o are definable in ACE7. A full characterization of k-saturated
models will be given in Proposition .

Lemma 1.3.11. If M E ACFy is k-saturated, then Py is a k-saturated model
of T.

Proof. Follows from Remark , by relativizing each formula in the type we
wish to realize to P. O
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For the next result, we will need the following algebraic technical lemma,
whose proof is left as an exercise to the reader.

Fact 1.3.12. Suppose F is a field and t is transcendental over F. For every n,
[F(t) : F(t")] = n.

Lemma 1.3.13. If M = ACFr is k-saturated, then trdeg(M/Pyr) > k.

Proof. Let S C M be an algebraically independent set over P,;. Suppose
|S| < Kk, we want to prove that there is some a € M such that a ¢ Py (S).
Consider the partial type over S

S(z) ={Vy € P (q(z,5) = 0 = Va'q(z',y) = 0) | q(z,9) € Qz,7, 5]}

where (@ is the prime field (F, or Q),  is a single variable and 7 is a tuple of
variables. Let %, (z) contain all formulas in X(z) where the degree of ¢(x,7) in
x is < n. We will show that a | X, (x) iff [Py (S,a) : Py(S)] > n and that
3, (x) is satisfiable in M. From compactness and saturation (|S| < k), we will
get that 3(x) is satisfied by some a € M. But then [Py (S, a) : Py (S)] > n for
all n, so a ¢ Pr(S).

Suppose a = X, (z). If [Py (S, a) : Pp(S)] < n, then there is some non-zero
polynomial r(z) € Py (S)[z] of degree < n such that r(a) = 0. The coefficients
of r(z) are rational functions in S over Py;. By multiplying by the denominators,
we can assume the coefficients are polynomials in S and Py, so r(z) = ¢(z, D)
for ¢(x,y) € Q[z,7y,S] and p € Py;. However, because ¢(a,p) = r(a) = 0, we
get from a = X, (z) that r(z) is constant zero.

Now suppose [Pas(S,a) : Par(S)] > n. Let q(x,5) € Q[z, 7, S] of degree < n
in z and p € Py, such that ¢(a,p) = 0. The polynomial ¢(z,p) is over Py (S),
has degree < n and has a as root, but [Pa(S,a) : Pr(S)] > n, so ¢(x,p) must
be constant zero. Hence a = X,,(z).

To prove that X,,(z) is satisfiable for every n, we need to prove that there
is some a € M such that [Py (S, a) : Pp(S)] > n. Split into three cases.

1. S=0, M # Py: Take some a € M \ Py and we are done.

2. 8§ = ), M = Py The axioms of ACF7 (Definition ) imply that
[Parr : Py] = 0o, By [Kei64, Lemma 3.1], there exists some a € Py such
that [PM(CL) : PM] >n.

3. S # 0: Take some sy € S and define F = Py (S \ {so}). Because M

is algebraically closed, there exists an n + 1-th root a = sj*' € M. We
know that sg is transcendental over F', so a is also transcendental over F'.
Fact implies that [F(a) : F(so)] = n+1, where F(so) = Pp(S) and
F(a) = Pp(S,a), as needed.

O

Lemma 1.3.14. Suppose trdeg(M/Pyr) > k (in particular, if M is k-saturated)
and let A, A" C M be subsets with |A|,|A’| < k. If f: Py(A) — Py (A') is an
isomorphism of fields that restricts to an L-automorphism f|p,,, then f can be
extended to an automorphism of M.
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Proof. From transitivity of transcendental degree
trdeg(M/ Pas) = trdeg(M/ Pay(A)) + trdeg(Par (A)/ Pas),

and trdeg(Par(A)/Py) < |A| < K, so trdeg(M /Py (A)) = trdeg(M/Pyy). Simi-
larly, trdeg(M /Py (A”)) = trdeg(M/Pyy). Let S,8" C M be transcendence ba-
sis of M over Py(A), Py (A’) respectively, |S| = trdeg(M/Py) = |S’|. Extend
f to an automorphism of fields o : M — M, by mapping S — S’ and extend-
ing to the algebraic closure arbitrarily. The restriction o|p,, = f|p,, is an L-
automorphism of P, so Lemma m implies that o is an L*-automorphism. [

I.4 Quantifier elimination and more

1.4.1 Completions

Keisler [Kei64] proved that ACFp is complete when T is a complete theory in
the language of rings. We generalize this by allowing the language of T' to be
arbitrary.

In his proof, Keisler used special models. We will instead use saturated
models, which simplifies the proof, but requires an additional set-theoretic as-
sumption (namely, the generalized continuum hypothesis). There are standard
techniques from set theory that ensures the generalized continuum hypothesis
from some point on while fixing a fragment of the universe (so_this does not
affect questions of e.g., completeness of a given theory), see [HK214], and we
will use this freely.

Proposition 1.4.1. If T is a complete theory of fields, then ACFr is complete.

Proof. Tt is enough to show that if M, N = ACFr are saturated models of
the same cardinality x, then they are isomorphic (see the discussion above the
proposition). By Lemma , Py, Py |E T are k-saturated, and in particular
|Par] = |Pn| = k. Because T is complete, [CK90, Theorem 5.1.13] implies that
there is an L-isomorphism o¢ : Py; — Py. By Lemma , trdeg(M/Pyy) =
trdeg(N/Py) = k. Let S C M, S’ C N be transcendence basis over Py, Py
respectively, |S| = |S’| = k. We can extend oy to an isomorphism of fields
o1 : M — N, by mapping S — S’ and extending to the algebraic closure
arbitrarily. The restriction o1|p,, is an L-isomorphism, so by Lemma [.3.9 o
is an Lf-isomorphism. O

1.4.2 Quantifier elimination

Our proof of quantifier elimination will be essentially the same as Delon’s [Del12,
Proposition 14]. One difference is that the criterion used by Delon to prove
quantifier elimination assumes a countable language, so we will need a slightly
generalized criterion.

In [HKR1§], Hils, Kamensky and Rideau proved the same result in a similar
fashion. Our proof was derived independently, as we were not aware of their
work during the research.

Fact 1.4.2. A theory T has quantifier elimination iff for any two models M, N =
T such that N is \M|+—satumted and any substructures A C M and A’ C N
with an isomorphism o : A — A’, o can be extended to an embedding M — N.
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Proof. Follows from [Hod93, Theorem 8.4.1]. O

Theorem 1.4.3. If T has quantifier elimination, then ACF; has quantifier
elimination.

Proof. Let M,N = ACFJ. such that N is |M|t-saturated. Let A C M,
A" C_N be L/ substructures with isomorphism ¢ : A — A’. By Corol-
lary , Frac(A) C M, Frac(A’) C N are L/-substructures with Prrac(a)y =
P4, Pprac(ary = Par. We can extend o to an isomorphism of fields Frac(A@
Frac(A’) that will have the same restriction P4 — P4/, and so by Lemma

would still be an L7-isomorphism. Thus, we can assume without loss of gen-
erality that A and A’ are subfields. By , Py is |M|*-saturated, and in
particular | Py/|T-saturated. The restriction o|p, : P4 — P/ is an isomorphism
of L-structures from Lemma , so quantifier elimination and Fact imply
that we can extend o|p, to an embeddin : Py — Py

Let B = 0¢(Py) € Py. By Lemma , AJ/lPA Py and A’ \LZPA/ Py, in
l

P, B. The field isomorphisms o : A — A’ and
0o : Py — B both restrict to the same isomorphism P4 — Pjy4/, so there is a
unique field isomorphism o7 : A.Py; — A’.B such that o1|4 = o, 01|p,, = 00,
by Corollary .

Let S C M be a transcendental basis of M over A.Py, |S| < |M]. From
Lemma trdeg(N/Py) > |[M|* and |A'| = |A] < |M]|, so there exists S’ C
N algebraically independent over A’.Py with |S| = |S’]. Let M’ = A".B(S") C
N. Quantifier elimination implies that the substructure B C Py is elementary,
so by Corollary B C Py is regular. We also know that A’ J/ZPA, Py,

so by base monotonicity A’.B J/IB Py and by Lemma [.2.9 A’.B(S57) JJB Py,

where A’.B(S") = M’'. Thus, M’ C N is a substructure, with Py, = B, from
Lemma .

We also have M = A.Py;(S), so we can extend o1 : APy — A’'B to oy :
M — M’ by mapping S + S’ arbitrarily and extending to the algebraic closure.
In particular, o9(Py) = B = Py and o9|p,, = 0p is an isomorphism of L-
structures, so o9 is an isomorphism of Lf-structures by Lemma [.3.9. Thus, o
is an embedding of M into N that extends o. O

particular by monotonicity A" |

Example 1.4.4 ([Dell2, Therorem 1]). ACFQCF eliminates quantifiers.

Example 1.4.5. ACFIf{CF eliminates quantifiers, where RCF is the theory of
real closed fields in the language Lyings U {<}.

Example 1.4.6. Let ACVF be the theory of algebraically closed valued fields in
the divisibility language, that is the language of rings with a binary relation x|y
signifying v(z) < v(y). ACVF eliminates quantifiers, so ACF . eliminates

quantifiers (by Example it is also NIP).

From quantifier elimination, we can deduce a couple of important corollaries.
Both corollaries will rely on expanding a theory T to the Morleyzation, which
has quantifier elimination, as defined below.

Definition 1.4.7. For a theory T', the Morleyzation Tyior of T is an expansion
of T by relations Ry (x) for any ¥ (z) € L, such that Tyior F Vo (Ry(2) <> ¥(x)).
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Corollary 1.4.8. Every formula ¢(z) € L¥ is equivalent modulo ACFr to
a bounded formula, that is a formula where every quantifier is over P (see
Definition )

Proof. Consider the Morleyzation Tui,, and the theory ACF%\Aor which has
quantifier elimination by Theorem In particular, ¢(z) is equivalent to
a quantifier free formula ¢o(x) € L{/Ior modulo ACF;MM. Replace all occur-
rences of Iy, fni i ¢o(z) with the formulas defining them, to get an equivalent
formula ¢;(z) € LL,,. The formulas defining ,,, f,.; are bounded, so ¢;(z) is
bounded.

For any formula ) € L consider the bounded formula %% (y) € L cre-
ated from Remark ﬁ/ The axioms of ACFr,,,, (Definition ﬁ) imply that
ACFr,,, F YyRy(y) < %" (y). Replace each predicate Ry (y) in ¢1(z) by the
corresponding ¥ (y), to get a bounded formula ¢5(x) € LT which is equivalent
to ¢(z) modulo ACF. O

Remark 1.4.9. In that case that L is the language of rings, Corollary @
follows from [CZ01, Proposition 2.1], because ACF has nfcp and Py is small in
any model M = ACFr (as witnessed in a saturated extension, by Lemma )

Corollary 1.4.10. Let M, N = ACF; andlet A C M, B C N be substructures.
Then o : A — B is a partial elementary map from M to N iff o : A — B is an
isomorphism of rings such that o(P4) = Pg and o|p, : Pa — Pg is a partial
elementary map from Py to Py.

Proof. Suppose o : A — B is a partial elementary map from M to N. Then
o is in particular an isomorphism, so 0(P4) = Pg. The restriction o|p, is a
partial elementary map from P to Py because for every formula ¢(x) € T,
we can apply Remark to get ¢’ (z) € ACFr, such that ¢(Pg) = ¢¥'(B) =
o(67(A)) = 0(6(Pa))-

For the other direction, suppose ¢ : A — B is an isomorphism of rings such
that o(P4) = Pp and o|p, : P4 — Pp is a partial elementary map from Pj; to
Py. In particular, Py; = Py, so we can assume that T' is the complete theory
T = Th(Py) = Th(Py). Let Tyor be the Morleyzation of T', To, has quantifier
elimination. We can expand the language of Py; and Py by definable relations
to get P, Py |= Thor- With this expanded language M, N |= ACFJ, . The
expansion is only relational, so we can still consider A and B as substructure.
The restriction o|p, is a partial elementary map in 7', so it is an isomorphism
in Tyior, and thus by Lemma o is an isomorphism in ACF;MOT. By Propo-
sition and Theorem ACF%Mor is complete and eliminates quantifiers,
so o is a partial elementary map in ACF%VM. In particular, it is a partial

elementary map in ACF;. O

Using this result on elementary maps, we can now show that Lemmas
i!’)

and [[.3.13 fully characterize the saturated models of ACF .

Proposition 1.4.11. Suppose k > |L|, then N = ACFr is k-saturated iff
Py E T is k-saturated and trdeg(N/Pn) > k

Proof. The first direction, if N | ACFr is k-saturated, then Pp T is k-
saturated and trdeg(N/Py) > k, is proved in Lemmas and [.3.13. For the
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other direction, we will prove k-homogeneity and x*-universality. By expanding
the language with definable relations and functions, we can assume N = ACF?.
Let A, B C N and let ¢ : A — B be a partial elementary map in N with
o(A) = B, such that |A| = |B| < k. Without loss of generality, we can assume
that A, B C N are Lf-substructures, and by Corollary m we can also assume
they are subfields. Corollary implies that o|p, : P4 — Pp is a partial
elementary map in Py. We know that Py is k-homogeneous and |P4| = |Pg| <
K, so we can extend o|p, to an automorphism og : Py — Py in T.

We have A \LIPA Py and B J/ZPB Py from Lemma [13.7, and the field iso-
morphisms o and o restrict to the same isomorphism P4 — Pg, so by Corol-
lary they can be jointly extended to an isomorphism of fields o; : A.Py —
B.Py. From Lemma Eil%é o1 can be extended to an automorphism of fields
o9 : N — N. Lemma implies that o9 is an L automorphism because
o2|py = 00 is an automorphism in 7', and o9 extends o as needed.

Now Let M | ACFp with |[M| < k, by expanding the language we can
assume M E ACF%. We have Py = T with |Py| < k, so by kT -universality
of Py there exists an elementary embedding 7o : Py — Py. Let B = 79(Pay).
We have B < Py, and in particular from Corollary B C Py is a regu-
lar extension. Let S be a transcendental basis of M over Py, |S| < x and
trdeg(N/Py) > Kk, so there exists Sy C N algebraically independent over
Py with |Sg] = |S|. We can extend 79 to an embedding 74 : M — N
by mapping S +— Sy arbitrarily and extending to the algebraic closure. Let
My =71 (M) = B(Sp). From Lemma , B(So) \LZB Py, so by Lemma
My C N is an Lf-substructure with Py, = B. We have that 7 : M — My is an
isomorphism of fields with 71|p,, = 70 : Py — P, an elementary embedding,
so by Corollary 71 is an elementary embedding. O

1.4.3 Model completeness

In [Del12, Corollary 15], Delon proved that ACFYp is model complete. We can
show that if T is model complete, then ACFlﬁ is model complete, but in fact we
only need a weaker condition — that regular extensions in 7" are elementary.

Theorem 1.4.12. The following are equivalent:
1. ACF% is model complete.
2. ACFY is model complete.

3. Forany Q,R =T such that Q C R is a substructure, if Q C R is a regular
extension, then Q < R.

4. Treg (Definition ) is model complete.

Proof. 1 = 2: Let M,N |= ACF} with M C N an L'%-substructure. We
can expand M and N uniquely to models of ACF;, by Lemma MCN
is an L7-substructure. ACF; is model complete, so M < N in LY, in particular
M < N in L',

2 = 3: Let Q,R =T with @ C R a regular extension. We will construct
M,N = ACFY such that Pyy = Q, Py = Rand M C N. We would have
liked to take M = @, but then we may have [M : Q] < oo, so we should
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make M a bit larger. Let s be a new element, transcendental over R. The
subfield @ C R is regular, so by Lemma [.2.9 Q(s) \LlQ R. Define M = Q(s),

Q C M is not an algebraic extension so in particular [M : Q] = co. We have
M= ACFT7 where we define Py = Q. Similarly, define N = R(s), N |— ACFld
with Py = R. We know that Py; C Py is an L-substructure and M \J/ PN,
so by Lemma 0 M C N is an L'-substructure. Model completeness 1mphes
M < N, and in particular Pp; < Py, because for every formula ¢(Z) € L we
have Py; = ¢(a) <= M | ¢F(a) <— N E ¢P(@) < Py E ¢(a) for
every a € Py, where ¢ is given by Remark

3 = 1. Let M\,N E ACFT and suppose M C N is a substructure.

Lemma [[.3.10 implies that Py; € Py is an L-substructure and M \LPM Py.
However, M is algebraically closed, so by monotonicity Pas JJZPM Py, that is

Py C Py is a regular extension. By the assumption, Py; < Py. The inclu-
sion map M — N restricts to the elementary inclusion Py; — Py, so from
Corollary [.4.10 M < N.

3 = 4. Let Q,R = T be such that @ C R is an L-extension. By
Lemma 7 @ C R is a regular field extension iff it is an L,eg-extension. In
particular, regular extensions are elementary iff 7., is model complete. O

Example 1.4.13 ([Del12, Corollary 15]). ACFY is model complete.

Example 1.4.14. ACFYL. is model complete, where PSF is the theory of
pseudo-finite fields in the language of rings (see Proposition )

Example 1.4.15. ACFacr is not model complete. By [TZ12, page 207], the
pregeometry of an algebraically closed field K of transcendence degree at least

4 over its prime field with algebraic independence is not modular: there are
algebraically closed subfields A, B C K such that A4 /| ACF B. Define

M=A N=K
Py=ANB Py = B.

It is clear that M C N is an LP-substructure, however if M < N then
Lemma ‘I.3.1d would imply that A J/imB B, and in particular A L
contradiction.

AﬁB

I.5 Classification and independence

In this section we will assume that T is complete (Proposition implies that
ACFr is also complete) and we will work inside a monster model M = ACFr.
Denote P := Py.

Assuming T is NSOP1, we will define an independence relation | * on M and
prove that it implies Kim-dividing (in fact, Kim* dividing, see Definition )
With this result, we will prove that ACFr is NSOP; and that under certain
conditions | * is the Kim-independence. We will then expand this result to
simplicity and stability.

We will also prove that stability lifts from 7" to ACFr using a different
approach, by counting types. This approach will let us extend the result to
A-stability.

Finally, we will prove that NIP lifts from 7" to ACFr,
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1.5.1 Kim-dividing

Definition I.5.1. Call a subfield A C M D-closed (D for Delon’s language) if it
is closed under the functions f, ;, or equivalently if A J/lpA P. For a set B C M,

denote by (B)p the D-closure of B, that is the smallest field containing B and
closed under f, ;.

Remark 1.5.2. We have the following remarks on D-closure:
e In [MPZ20, Definition 3.1], the condition D-closed was called P-special.

e If A C M is definably closed in L¥, then it is D-closed. In particular, for
every A C M, dcl(A) and acl(A) are D-closed.

e D-closure gives a shorter proof of local character of \Ll (see Fact )
Suppose a is finite and B is an infinite field and consider the structure
(B(a), B) (the field B(a) with a predicate for B). Define By = (a)p N B,
which is countable. We have By(a) = {(a)p, so Bo(a) J/igo B.

Lemma 1.5.3. Suplpose A, B,CC I\{JI are subfields with C C AN B. If A is D-
closed, then A.P \I/C.P B.P iff A \I/C.PA B.P. By symmetry, if B is D-closed,
then A.P JJZC.P B.P iff A.P J/lC.PB B. Furthermore, if both A and B are D-
closed, then A.P \LZC_P B.P implies A.B J/ZPA_PB P, i.e. Pyg = P4.Pg and
A.B is D-closed.

Proof. If A JJZC.PA B.P, then A.P J/lC.P B.P from base monotonicity. On the

. 1 1 o 1
other hand, if A.P |, B.P, then because A J'/PA P implies A LC'PA Cc.P
from base monotonicity, we get from transitivity that A \Llc P B.P. For the
1 1 1

furthermore part, we know from A J/PA Pand A.P | ., B.Pthat A J/C_PA B.P.
By base monotonicity, A.B J/l B.P. Also, from B JJZPB P and base mono-

B.P,
tonicity, B.P4 \LZPA. P, thus by transitivity A.B \LZPA_PB P. O

Pp

Definition 1.5.4. Let M < M and A, B C M be small D-closed subfields, such
that M C AN B. Define A JJLB if

1. Py L}, PpinP.
2. AP|' _BP.

Lemma 1.5.5. Let A, B,C C M be small subsets with C C ANB. If A J/é B,
then:

1. Py LY PginP.

2. If A, B and C are subfields and B is D-closed, then A.P \LZC.P B.P.

In particular, if M < M and A and B are D-closed with M C AN B, then
u . . *
A L, B implies A | B.
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Proof. For point (1), suppose P = ¢(a,b) for some formula ¢(z,y) € L, a € Py
and b € Pg. Let ¢*'(z,y) € LT be as in Remark @, we have M |= ¢ (a,b).
By A |/, B there is some ¢ € C' such that M |= #F (c,b). Thus, c € PNC = P,
and we have P = ¢(c,b).

For point (2), it is enough to prove A.P JJIC‘PB B by Lemma . Let
>, uibi = 0 for u; € A.P, b; € B such that the u; are not all trivial (not all
equal to 0). We can write u; = f;(a;, p;) for f; € C(Z;,7;) a rational function,
a; € A, p; € P. Thus, we have |= Y. fi(@i, pi)bi = 0N, fi(@i, p;) # 0, and in
particular = 3y; € P, Z fi(@i, 9i)bi = OAV/, fi(@i, 9;) # 0. From A J/ B, there
are ¢; € C such that =3g; € PY ", fi(Gi, 5:)bi = 0NV, fi(Gi, 9s) # 0. Let g €P
witness the existence, and let v; = f;(¢;, ¢;) € C.P. We have Y. v;b; = 0 and v;
are not all trivial. Moreover, B J/ZPB P, so by base monotonicity B \LIC p, O
thus there are w; € C.Pg, not all trivial, such that ZZ w;b; = 0, as needed.

The “in particular” part follows from the definition of | *, because P4 \LTILDM Pgp

implies Py LgM Pg (see [dE214, Fact 3.10]). O

Lemma 1.5.6. Let A,B,C C M be small subsets with C C AN B and let
(Bi)i<w be a C-indiscernible coheir sequence such that B =4 B;, then (Pg,)i<w
is a Po-indiscernible coheir sequence such that Pp =p, Pp, in P.

Proof. For every formula in P, we can restrict all quantifiers and free variables
to be over P to get a formula in M with the same definable set. This proves
that (Pp,)i<w 18 Pc-indiscernible and Pg =p, Pp, in P. From Lemma i.5.5‘,
Pg, J/;c Pp_, in P, and Pp_, = U,; P5;, s0 (Pp,)i<w is a Pc-indiscernible
coheir sequence. O

Proposition 1.5.7. Assume T is NSOPy. Let M < M and let A,B C M be
small D-closed subfields with M C AN B, such that A is algebraically closed
as a field. I A\L*M B, then tp(A/B) does not Kim"-divide over M (recall

Definition )

Proof. Let (B;)i<. be any M-indiscernible coheir sequence such that B =j; B;
for every i < w and let 8; : B — B; be L-isomorphisms matching the tuples.
By Lemma , (PB,)i<w is a Pps-indiscernible coheir sequence. Because T
is NSOP; and P4 \LgM Ppg, Fact (2) implies that there exists Q C P
such that P4Pp =p,, QPp, in P for all i < w. This means that there are
automorphisms ~; of P mapping P4 Pp to QPp, and preserving Py pointwise,
such that the restriction ~;|p, : P4 — @ is the same for every i < w, call it
ap : Pa— Q

Let S C A be a transcendence basis of A over M.P4. By Lemma ,
trdeg(M/P) = |M], so there exists some S’ algebraically independent over B, P
with |S’| = |S|. Define A’ = M.Q(S’). From Lemma 1.3.1, M \Ll P, so from

monotonicity M L Paand M JJ p,, @ Thus, from statlonarlty of |} we
can extend aq : Py —> Q@ to an isomorphism of fields M.P4 — M.Q preserving
M pointwise. Map S — S’ arbitrarily and extend arbitrarily to the algebraic
closure, to get an isomorphism of fields o : A — A’. This give us a way to

consider A’ as a tuple.
Let i < w. We know that B J/ P and B; J/ P, the field isomorphisms

Bi:B— Byand v, : P - P both restrict to the same isomorphism Pg —
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Ppg,, so from Corollary they can be jointly extended to an isomorphism of
fields 0,0 : B.P — B;.P. From A.P J/l B.P and Lemma we get that

A J/M p, B-P. We would like to prove that also A’ J/ MO B;.P. We know that
A is algebraically closed, so M.P4 C B.P isregular. Applying Lemma [.2.§ with
0i,0, we get that M.QQ C B;.P is regular The set S’ is algebraically independent
over B;.P, so from Lemma [.2.9 M.Q M.Q(S") J/M.Q B;.P, where M.Q(S") = A’
The isomorphisms of fields @ : A — A’ and 0,9 : B.P — B;.P restrict to
the same isomorphism M.P4, — M.(Q), which acts as ay on P4 and preserves
M pointwise. Thus, from Corollary, they can be jointly extended to an
isomorphism of fields 0,7 : A.B.P — A’.B;.P. By Lemma , 0;1 can
be extended to o2 an LP-automorphism of M. The automorphism 0,2 Maps
AB — A’B; and preserves M pointwise, so AB =); A’B;. This is compatible
with the way we defined A" as a tuple, because 0; 2|4 = a. O

1.5.2 NSOP,, simplicity

Remark 1.5.8. In a general theory T, if A \L B, then acl(AC) J/ A(C) acl(BC).

Indeed, by extension, for some A’ =gc A we have A’ \Lc acl(BC), and by apply-
ing an automorphism taking A’ to A and fixing BC we get that A J/Z acl(BC).
By base monotonicity, A J/ZCI(C) acl(BC).

Suppose that = ¢(d,b) where ¢(x,y) is a formula over acl(C), d € acl(AC)
and b € acl(BC). Let ¥(x,z) be a formula over C and a € A be such that
U(x,a) is algebraic, say of size n, and = ¥(d,a). By the first part there exist
¢ € acl(C) such that ¢Y(z,c) is of size n and = Jz(Pp(x,b) A Y(x,c)), let e
witness the existence. The fact that = (e, c) implies that e € acl(C), and we
have = ¢(e,b), so acl(AC) | 2cl(C) acl(BC).

Theorem 1.5.9. If T is NSOP, then ACFp is NSOP;.

Proof. We will use Fact . Let M < M and suppose Ay, A1, By and B
are such that AyBy =y A1B1, By \LX/I By and B; J/;& A; for i = 0,1. By
Remark i.5.8‘, we can assume that A; = acl(4;M), B; = acl(B;M), and in
particular they are all D-closed and algebr aically closed.

From By J/L Ag, we get using Lemma that By J/ Ap. However, T is

NSOP;, so Fact (3) implies that | * in P is symmetrlc, thus | * is also
symmetric and we have Ag J/j\/[ By. By Proposition , tp(Ao/Bo) does not
Kim"-divide over M. Extend the pair (By, B1) to a coheir sequence (B;);<, (to
do that, first extend tp(B1/M By) to a global type which is finitely satisfiable in
M, and then generate a Morley sequence in that type; see [KR20, §3.1]). By the
definition of Kim"-dividing (Definition ) we get that there exists A C M
such that AoBO =M ABO =M ABl O

Example 1.5.10. The theory of w-free PAC fields was shown to be non-simple
by Chatzidakis [Cha99], as it is PAC and unbounded, and NSOP; by Chernikov
and Ramsey [CR16]. Thus, ACF, freec pac is NSOP; and non-simple as the
theory of w-free PAC fields is interpretable in ACF,,_free PAC-

Now we will show that in NSOP; theories, Kim-independence is | * for
certain sets.
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Proposition 1.5.11. Assume T is NSOP;. Let M < M and let A, B C M be
small D-closed subfields with M C AN B. Then A J/AIZ B implies A J/jw B.

If either A or B are algebraically closed as fields, then also A \Lj\/] B implies
ALY B

Proof. The theory T is NSOP1, so ACF7 is also NSOP; from Theorem .
Suppose A \Lﬁ B, we need to prove that Py J/gM Ppin P and A.P \LlM_P B.P.

There exists an M-indiscernible coheir sequence (B;);<w, with B =4 B;. From
Lemma 7 (Pp,)i<w is a Py indiscernible coheir sequence with Pg =p, Pp,
in P. Because T' is NSOP;, Fact (1) implies that Py J/gM Pg.

To prove that A.P J/éw p B.P, it is enough to prove that A J/lM‘PA B.P, by

Lemma . Let @ € A be a finite tuple and suppose it is linearly dependent
over B.P. Because A J/I;[ B, we can construct an uncountable M-indiscernible
coheir sequence (B;)i<w,, with B =4 B;. Let 0; € Aut(M/A) be an automor-
phism mapping B to B;. We know that o; preserves P setwise, so by applying o;
we get that @ is linearly dependent over B;.P. By local character, there is some
countable subfield C' C acl(B«y, ).P such that C(a) \Llc acl(B«,,, ).P. Because
C' is countable, there is some i < w; such that C C acl(B<;).P. By Remark m

we have B; | |, acl(B<;), so Lemma implies that B;.P J/iV[.P acl(B<;).P,

and in particular from monotonicity B;.P J/lM I M.P.C'. However, the fact that
C(a) LZC acl(B«y, ).P also implies, using monotonicity, base monotonicity and

symmetry, that B;.P.C J-/éW.P.C M.P.C(a), so by transitivity B;.P \LL.P M.P.C(a).
The tuple @ is linearly dependent over B;.P, so it is linearly dependent over M.P.
However, A is D-closed so A \LIPA P and by base monotonicity A J/lM P, M.P.
Thus, @ is linearly dependent over M.P4, as needed.

If Ais algebraically closed and A | jw B, then from Proposition i 5. i tr (A/B)
does not Kim“-divide over M. ACFr is NSOPy, so by Remark m Kim"-
dividing is the same as Kim-dividing, and by Fact (2) Kim-dividing is the
same as Kim-forking, thus A \L]\K/I B. The case where B is algebraically closed

follows from symmetry of | * and | (Fact (3)) O

Remark 1.5.12. The proof of Proposition was inspired by the proof of
[BYPV03, Proposition 7.3]

Theorem 1.5.13. If T is simple, then ACFr is simple.

Proof. Suppose T is simple, in particular T" is NSOP; so Theorem implies
that ACF7 is NSOP;. By Fact (5), for an NSOP; theory being simple
is equivalent to Kim-independence having base monotonicity. Let A, B C M
be small subsets and M, N < M submodels, such that M C A, M C N C B.
Suppose A J/};[ B, we want to prove A J/]If[ B. Without loss of generality we
can assume that A and B are z;(cl—closed. l

By Proposition , A J/M B implies A \LM B. We have A.P \|/M_P B.P,
and by monotonicity A.P \LlM_P N.P, so from Lemma N.A is D-closed.
Since B is D-closed and algebraically closed as a field, by Proposition

it is enough to prove N.A \LE‘V B. By base monotonicity of linear disjointness,
1 R 1 -
AP J/M.P B.P implies N.A.P J/N.P B.P. We know that T is simple, so by base
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monotonicity of Kim-independence in P, Py J/gM Pg implies Py.Pa J/IP{N Pg.

Example 1.5.14. ACF is simple, where PSF is the theory of pseudo-finite
fields (see Proposition [.6.1( for an alternative proof).

1.5.3 Stability

There are a few ways to prove that if T is stable, then ACFp is stable. The
first option, continuing in the path of the previous results, is using a Kim-Pillay
style characterization on non-forking independence, which in simple theories is
the same as Kim-independence over models.

The second option is a more direct approach, by counting types. The second
option will give us a stronger result, that if T" is A-stable, then so is ACFr,
which will let us extend to super-stability and w-stability. Even though the
second option is strictly stronger than the first, we will also show the first, to
complete the picture on Kim-independence.

A third way to prove stability, is by proving the existence of saturated mod-
els of certain cardinalities. This could be done using the characterization of
saturated models of ACFr found in Proposition but we will not expand
on it here.

Remark 1.5.15. When the predicate has no extra structure, stability can also
be deduced from [CZ01, Corollary 5.4] (which cites [Pil98], probably meaning
Proposition 3.1 there), which is a much more general statement: if M is strongly
manimal and A is some subset of M such that the induced structure on A is stable,
then (M, A) is stable.

Theorem 1.5.16. If T' is stable, then ACFr is stable.

Proof. Suppose T is stable, in particular T is simple so Theorem implies
that ACFr is simple. [KR20, Proposition 8.4] says that in simple theories, non-
forking independence over models is the same as Kim-independence. To show
that ACFr is stable, it is enough to show that non-forking independence has
stationarity over models ([Casll, Theorem 12.22]). Let A, A’ and B be small
subsets such that M C AN A’NB. Suppose A J/Z B, A Lﬁ Band A=, A'.
Without loss of generality we can assume A, A’ and B are acl-closed.

We have P4 =p,, Pas, and by Proposition @ Py J/ PB and Py, J/ PB
in P. We know that T is stable, so by stationarity P4 = pB Pyr. Let og be an
automorphism of P mapping P4 to P4/ and preserving Pp pointwise. We have
B JJZP P, so by stationarity of linear disjointedness we can extend og to o7 :

B
B.P —> B.P preserving B pointwise. By Proposition and Lemma ,

A J/MP B.P and A’ J/MP B.P, so by Corollary [.2.5 we can extend o7 to

: A.B.P — A’.B.P, mapping A to A’. Extend o3 to o3, an automorphism of
M, using Lemma [.3.14. The automorphism o3 maps A to A’ and preserves B
pointwise, so A =g A'. O

Example 1.5.17. ACFgcr is stable, where SCF is the theory of separably
closed fields.

To prove stability by counting types, we will need to show that P is stably
embedded in M.
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Definition I.5.18. A set @ C M™ which is definable over the empty set is
called stably embedded if for every n, if D C M™" is definable, then D N Q™ is
definable with parameters from Q.

Fact 1.5.19 ([Cha99, Appendix, Lemma 1]). For Q@ C M as above, if every
automorphism of the induced structure on @ lifts to an automorphism of M,
then Q is stably embedded.

Remark 1.5.20. The precise formulation of the above fact is more general but
requires extra assumptions on T, namely that T = T°? and that the language is
countable. However, those assumptions are not used in the proof of the direction
we cited.

Lemma 1.5.21. The induced structure on P as a subset of M is the same (up
to inter-definability) as the intrinsic L-structure of P.

Proof. If A C P™ is definable in P by a formula ¢ € L, then we can construct
by Remark a formula ¢© € LT that defines A in M.

In the other direction, if A C P™ is definable in M by a formula ¢ € L, then
we can assume by Corollary that v is bounded. Remove any occurrence
of P in ¢, by replacing « € P with a tautology (x = z), to get a formula in L
that defines A in P. O

Proposition 1.5.22. P is stably embedded in M.

Proof. Follows from Fact and Lemmas and . O

Remark 1.5.23. It follows from a simple compactness argument that P is even
uniformly stably embedded, that is, for any formula ¢(x,y) there exists a formula

Y(x, z) such that for every b € M there is c € P with ¢(P,b) = (P, c).
Theorem 1.5.24. If T is A-stable, then ACFr is A-stable.

Proof. Suppose T is A-stable, we can assume that |T| < A by replacing T up
to inter-definability (see e.g. [TZ12, Exercise 5.2.6]). Let C' C M be a subset
with |C] < A, we need to prove that [S*F7(C)] < A, where S2°FT(C) is the
space of types in one variable over C. First we will prove that all elements
in M\ P(C) have the same type over C. Suppose ag,a; € M\ P(C), that is
both ag and ay are transcendental over P(C). There is an isomorphism of fields
P(C,ap) = P(C,ay) given by fixing P(C') pointwise and mapping ag — a;. By
Lemma , we can extend this map to an automorphism of M, so ag =¢ a;.
It remains to show that there are at most A types in P(C). Any element of
P(C) solves some non-zero polynomial of the form ¢(z;b,c) with b € P"™ and
c € C"™, and in particular satisfies

¢(x;c) =Ty € P (q(z;9,¢) = 0/ Ta'q(a'sy,c) # 0).

Thus, any type in P(C') contains some formula ¢(z;c) as above. There are at
most \ formulas in L with parameters from C, so it is enough to prove that
there are at most A types that contain any given formula ¢(z;c) as above.

First of all, P is stably embedded in M (Proposition ), so every C-
definable subset of P™ is also definable in ACF with parameters from P. Let
D C P be the set of all the parameters needed to define every C-definable subset
of P™. There are at most A definable subsets of P™ over C, so |D| < .
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Let [¢] C S2CFT(C) be the set of types implying ¢(x;c). We will construct
amap p : [¢] — SI(D) such that p has finite fibers. Because T is A-stable,
|ST(D)| < A, so this will imply |[¢]| < A as needed.

For any type p(z) € [¢], choose some realization a = p. In particular,
E ¢(a;c), so we can choose some b € P™ such that ¢(z;b,c) is non-zero and
q(a;b,¢) = 0. Define p(p) = tp” (b/D). Suppose po,p1 € [¢] and p(po) = p(p1),
that is, if a,, b; are the specific elements we chose for p; (i = 0,1), then by E% by.
There is an automorphism of P over D mapping by — b1, which can be extended
by Lemma | to an automorphism of Ml over D, so by = ACFT b1. We want
to prove that by :éCFT b1. Suppose by belongs to some C- deﬁnable set, we can
assume that it is a subset of P™ because by € P™. By the construction of D,
this C-definable subset of P™ is also D-definable in ACFr, so by belongs to it

Let 0 € Aut(M/C) be an automorphism mapping by to b;. We have
q(o(ap);b1,¢) = 0, thus ag has the same type over C as a root of ¢(z;b,c),
specifically o(agp). It follows that every type in the fiber of p(p;) is a type over
C' of a root of q(z;b1,¢), however ¢(x;by,¢) is non-zero, so it has only finitely
many roots. Thus, p has finite fibers. O

We can apply Theorem on a specific A to give another proof of Theo-
rem [[.5.16. We also get the following corollaries:

Corollary 1.5.25. If T is superstable, then ACFr is superstable.
Corollary 1.5.26. If T is w-stable, then ACFr is w-stable.

Example 1.5.27. ACFacF is w-stable, see Proposition m for an extended
application of this result.

Remark 1.5.28. Per the definition in [Poi83], ACF scr is a belle pair, so it
is stable. In [BYPV03], the notion of belle pairs was expanded to lovely pairs
and a description of non-forking independence was given. When considering
pairs of ACF, the description of non-forking independence in Proposition lz.5.11
is slightly different from the description given in [BYPVO03, Proposition 7.3] —
instead of the condition A.P L p B.P they have A.P J/ACF B.P. However,
in this case the conditions are equwalent as can be seen in /MPZQ(,' Corollary
6.2].

1.5.4 NIP

We will prove that if T is NIP, then ACFr is NIP. First we will define the
notions of a NIP formula, type and theory, and present some basic facts based
on [Sim15] and [KS14].

Definition 1.5.29. A formula ¢(z,y) has the independence property (IP) if
there is a sequence (a;);<,, such that for every s C w the set {¢(a;,y) |7 € s} U
{—¢(a;,y) | i ¢ s} is consistent.

A partial type 7(z) has IP if there is a formula ¢(z, y) and a sequence (a;);<w
of realizations a; |= 7(x) such that for every s C w the set {¢(a;,y) |7 € s} U
{=¢(ai,y) | i ¢ s} is consistent. Otherwise, m(x) is NIP.

A theory T has IP if some formula has IP modulo T, or equivalently the
type = x has IP. Otherwise, T is NIP.
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Fact 1.5.30 ([Siml15, Lemma 2.7]). A formula ¢(x,y) has IP iff there is an
indiscernible sequence (a;)i<,, and a tuple b such that = ¢(a;,b) < i is even.

Fact 1.5.31 ([Siml5, Proposition 2.11]). A theory T is NIP iff no formula
d(x,y) with ly| =1 has IP modulo T.

Fact 1.5.32 ([KS14, Proposition 2.6]). Suppose w(x) is a partial NIP type
over A and B is a set of realizations of m(x). If I = (ai)i<|r|++|B|+ 5 an
A-indiscernible sequence, then some end segment of I is indiscernible over AB.

First we need to show that P is NIP per Definition
Lemma 1.5.33. IfT is NIP, then P is NIP, i.e. the partial type x € P is NIP.

Proof. Suppose x € P has IP. Then there are a sequence (a;);<, with a; € P
and a formula ¢(z,y), such that for every s C w, there exists by € M such that
M E ¢(a;,bs) < i € s. By Remark , P is uniformly stably embedded in
M, so there exists a formula ¢ (z, z) € LT and parameters c, € P for every s C w,
such that ¢(P,bs) = ¥ (P, cs), and in particular M = ¢ (a;,¢5) <= i € s.

The induced structure on P is inter-definable with the internal L-structure
of P (Lemma ), so there is some formula ’(z,z) € L that defines the
same set in P as ¥(x, z), in particular P |= ¢/ (a;,¢s) <= i € s. The formula
¥'(z,y) has IP in P = T, in contradiction to T being NIP. O

Theorem 1.5.34. If T is NIP, then ACFp is NIP.

Proof. Suppose ACFr has IP, by Fact there is some ¢(z,y) with |y| =1
m

that has IP modulo ACFr. Using Fact (0 and compactness, there is an
indiscernible sequence I = (a;);<|7;+ € M and some ¢ € M such that M |=
@(a;,¢) < 1iis even.

First consider the case where c is transcendental over P(I). One can find,
using Ramsey (see e.g. [[Z12, Lemma 5.1.3]), a sequence I’ indexed by |T'|"
that is indiscernible over ¢ with the same EM-type as I over ¢ — that is, if
a formula ¢(Z;c) holds for every increasing tuple in I, then it holds for every
increasing tuple in I’ (see [TZ12, Definition 5.1.2]). In particular, ¢ is still
transcendental over P(I'). Both I and I’ are indiscernible and have the same
EM-type over the empty set, so there is an automorphism mapping I’ — I. If
we apply this automorphism on ¢, then we get ¢’ transcendental over P(I) such
that I is indiscernible over ¢’. By Lemma , there is an automorphism fixing
P(I) pointwise and mapping ¢’ + ¢, so I is indiscernible over ¢, a contradiction.

Now consider the case where c¢ is algebraic over P(I). There is some finite
subsequence Iy C I and some finite tuple b € P, such that c is algebraic over Iyb.
Let I' C I be some end segment starting after In; note that I’ is indiscernible
over Iy. As P is NIP (Lemma ), by Fact there is an end segment
I" C I that is indiscernible over Iyb. It follows that I" is also indiscernible over
acl(Iob), and in particular over ¢, a contradiction. O

Example 1.5.35. Let ACVF be the theory of algebraically closed valued fields
in the divisibility language, that is the language of rings with a binary relation
x|y signifying v(x) < v(y). ACVF is NIP, so ACFacvyr is NIP.

Remark 1.5.36. One could also use a counting type approach to prove preserva-
tion of NIP, similar to the proof of Theorem . This would require working
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in a generic extension of ZFC such that ded(k)X° < 2% for some infinite cardinal
k (where ded(k) is the supremum of cardinalities of linear orders with a_dense
subset of size < k). For an expanded explanation of this approach, see [She9(,
Theorem I1.4.10] and JAdI07T, Corollary 24].

Alternatively, one could also apply more general results, i.e., [CS14, Corol-
lary 2.5] and |JS20, Proposition 2.5], but we chose to give a direct argument.

I.6 Applications

In this section we will apply the above results to specific theories.

1.6.1 Tuples of algebraically closed fields

In this section we will consider (perhaps infinite) chains of algebraically closed
fields, which, for the finite case, is a particular case of beauz uples in the sense
of [BP88]. The main result of this section is Proposition 1.6.4 which classifies
the theories of such chains based on the order type of the chain.

Definition 1.6.1. For any ordered set I, define L = Lyjpgs U {P;};c; with P,
unitary predicates and define the theory ACF! expanding ACF in L!, such that:

1. Each P; is an algebraically closed field, that is strictly contained in the
model.

2. FOri<j,Ping.

In particular, ACF" is the theory of algebraically closed fields M, with n alge-
braically closed subfields Py C P, C ---C P,_1 C M.

=

Proposition 1.6.2. Let I be any ordered set.

1. The completions of ACF! are given by fizing the characteristic, ACF;.

2. Every completion of ACF! is stable.

Proof. We will first prove for I = n, by induction on n. For n = 0, ACF® =
ACF, and indeed the completions of ACF are given by fixing the characteris-
tic and every completion ACF), is stable. Suppose it is true for n. We have
ACF™™! = ACF ocpn, where we denote the added predicate by P,. By Proposi-
tion , the completions of ACF™ ™! are given by completions of ACF"™, which
are given by fixing the characteristic. Furthermore, ACF;H'1 = ACFACF;, SO
by Theorem every completion ACFZJrl is stable.

Now consider a general ordered set I and fix a characteristic ACF{?. Let ¢
be a sentence in LT and let 14 C I be the subset of indexes i € I such that P;
appears in ¢. Iy is finite, suppose I, = {ip < -+ <i,_1}. ACF) is complete,
so by renaming the predicates Fy,..., Ph—1 to P;,,..., P; _, we get that ACF;;”
is complete. Thus, ACFZI;‘5 F ¢ or ACF}If F —¢, but ACF}If is a restriction
of ACFII,7 SO ACFII, F ¢ or ACF; F —¢. The completions ACF{D are all the
completions of ACF!, because any completion has to fix a characteristic so it
must extend some ACF;.
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We need to show that every completion ACF{D is stable. If ¢ € L! was
a formula witnessing instability in ACF]ID, then it would witness instability in
ACF{,"’, which would imply that ACF)) is unstable for n = |I4|. O

We will further classify the stability of ACFII) (when is it w-stable, superstable
or totally transcendental) based on the order type of I. In the case that I is an
ordinal, we will need the following lemma.

Lemma 1.6.3. Let o be an ordinal and M |= ACF®. Any LP-automorphism of
Pg for B < a can be extended to an L™-automorphism of M.

Proof. Let og be an automorphism of Pg, we will construct by transfinite in-
duction on 8 < 7 < a automorphisms o, of P, such that if 3 <4/ <y < a,
then o, extends o..

Let 5 <7 < a and suppose we constructed o, for § <+’ <. Let o0, be
the union of {0y }5 /., o<y is a field automorphism of Pey =, ., Py (if
v = +'+1is a successor ordinal, then o, = 0,/). Let S be a transcendence basis
of P, over P.,, extend o, to a field automorphism o, by fixing S pointwise
and extending to the algebraic closure. For every 7' < v, o, preserves P
setwise, so o, is an LY-automorphism.

Once we constructed o for every 8 < v < a, we can construct o,, an L*-
automorphism of M, in a similar fashion: take o<, the union of {o,} f<y<ar
fix a transcendence basis of M over P, pointwise and extend to the algebraic
closure. O

Proposition 1.6.4. For an ordered set I:

1. If I is finite, or countable and well-ordered, then every completion of ACF!
is w-stable.

2. If I is uncountable and well-ordered, then every completion of ACF! is
totally transcendental, and in particular superstable, but not w-stable.

3. If I is not well-ordered, then every completion of ACF! is not superstable.

Proof. Fix a completion ACFII) (by Proposition )

1. The theory ACFZI) depends only on the order type of I, up to renam-
ing predicates, so it is enough to prove for I = « a finite or countable ordi-
nal. We will prove that ACF} is w-stable by transfinite induction on o < w;.
For a = 0, ACFg = ACF, is w-stable. If ACF} is w-stable, then note that
ACF"‘1 = ACFACFg where we name the added predicate P,, so by Corol-
lary ACFIO,‘Jr1 is w-stable.

Suppose that « is a countable limit ordinal and for every § < «, ACFg
is w-stable. the proof that ACF} is w-stable will be similar to the proof of
Theorem . Let M = ACF, be a monster model and let C C M be a
countable subset. Denote P, = |J f<a Pgs. First we will show that every two

elements in M\ P, (C) have the same type over C. Let ag,a; € M\ P, (C
for every 8 < a, ap and a; are transcendental over Pg(C) so by Lemma
there is an automorphism of M | L#*! preserving Ps(C) and mapping ag +— a;.

Bt1 o .
Thus, ag Eé a; for every 8 < a, so ag E(Lj a1, as every formula in L®
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belongs to some LAt where f is the largest ordinal such that P3 appears in
the formula.

Now we will show that there at most countably many types over C' realized
in P<o(C). Any element a € P.,(C) solves some non-zero polynomial of the
form g(x;b,c) with b € P2, and ¢ € C™. There is some 8 < a such that b € Py,

in particular a satisfies

P(x;¢) =Ty € Pg (q(z;y,¢) = 0A a'q(z;y,¢) #0).

Thus, any type in P.,(C) contains some formula ¢(z;c) as above. There are
countably many formulas in L* with parameters from C, so it is enough to prove
that there are at most countably many types that contain any given formula
o(x; ¢) as above.

First of all, Ps is stably embedded in M (every automorphism of Pg can
be extended to an automorphism of M so we can use Fact ; alternatively,
ACF} is stable so every definable subset is stably embedded), so every C-
definable subset of Pj is also definable in ACF} with parameters from Pg. Let
D C Pjs be the set of all the parameters needed to define every C-definable
subset of Pg. There are at most countably many definable subsets of Pg over

C, so D is countable.
Let [¢] C Si\CFP (C) be the set of types implying ¢(z;c) as above, we will

8
construct amap p : [¢] — ST? O (D) such that p has finite fibers. Because ACFg

is w-stable, |Sﬁ cry (D)] is countable, so this will imply that [¢] is countable as
needed.

For any type p(z) € [¢], choose some realization ¢ = p. In particular,
= ¢(a;c), so we can choose some b € Pg such that g(z;b,c) is non-zero and

q(a;b,c) = 0. Define p(p) = tpACFZ(b/D). Suppose po,p1 € [¢] and p(pg) =
p(p1), that is, if a; and b; are the specific elements we chose for p; (i = 0,1),

ACF# . . .
then by =, ” b;. There is an automorphism of Pg over D mapping by — b1,
which can be extended by Lemma to an automorphism of M over D, so
__ACF? CF2

A
bo =p * by. We want to prove that by =, * b;. Suppose by belongs to some

C-definable set, we can assume that it is a subset of Pj because by € Pj. By the

construction of D, this C-definable subset of Py is also D-definable in ACFy,

ACF®
so by belongs to it as bg =5, ” bs.

Let 0 € Aut(M/C) be an automorphism mapping by — b;. We have
q(o(ao);b1,¢) = 0, thus ap has the same type over C as a root of ¢(x;by,c),
specifically o(ag). It follows that every type in the fiber of p(p1) is a type over
C of a root of q(z;b1,c¢), however q(x;by,c) is non-zero, so it has only finitely
many roots. Thus, p has finite fibers.

2. Suppose I is uncountable and well-ordered. If ACFII, was not totally tran-
scendental, there would be a binary tree of consistent formulas {¢s(2;¢s)} ;o<
(see [TZ12, Definition 5.2.5]). Let Iy C I be the finite or countable subset of in-
dexes i € I such that P; appears in some formula ¢,. The tree {¢s(2;¢s)} o<
is also a binary tree of consistent formulas in ACFII,O, SO ACFII]0 is not totally
transcendental. However, a subset of a well-ordered set is also well-ordered, so
by the previous part ACF;0 is w-stable and in particular totally transcendental.

However, ACF! can not be w-stable, as it is not inter-definable with a theory
in a countable language — each P; for i € [ is a distinct definable set.
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3. Note that an ordered set I is well-ordered iff I does not contain an infinite
descending chain. If T is not well-ordered, let (ix)r<w C I be a descending chain,
then (P;, )k<. is a descending chain of definable subfields in ACFII). Considering
only the additive group structure, (P;, )r<w is a descending chain of definable
subgroups each of infinite index in the previous one, so ACF; is not superstable
(see e.g. [TZ12, Exercise 8.6.10]). O

1.6.2 Complete system of a Galois group

For a profinite group G one can associate a structure S(G), called the complete
system of G, in a multi-sorted language. This definition is due to [CvdDMS81]],
we will present the definition as given in [Ram18, Definition 7.1.6].

Definition 1.6.5. Suppose G is a profinite group. Let A(G) be the collection
of open normal subgroups of G. Define

s@= [[ a&/n.

NeN(G)

Let Lg be the language with a sort X,, for each n < w, two binary relation
symbols <, C' and a ternary relation P. We regard S(G) as an Lg-structure in
the following way:

o The coset gN is in the sort X, iff [G : N] < n.

« gN <hM iff N C M.

o C(gN,hM) iff N C M and gM = hM.

o P(91N1,92N2,g3N3) iff N1 = Ny = N3 and g1g2N1 = g3 V1.

Note that we do not require the sorts to be disjoint (see [Cha9§, §1] for a
discussion on the syntax of this structure).

For a field F, let G(F) = Gal(F/F) be the absolute Galois group of F,
which is profinite. In [Raml§, Corollary 7.2.7], Ramsey proved that if F' is
a PAC field such that Th(S(G(F')) is NSOPy, then Th(F) is NSOP;. We will
prove the other direction, using the following fact, proved in [Cha02, Proposition
5.5].

Fact 1.6.6. S(G(F)) is interpretable in (K, F) where K is any algebraically
closed field extending F'.

Proposition 1.6.7. Let F' be a PAC field. Then Th(F') is NSOP; iff Th(S(G(F)))
] NSOPl .

Proof. The left to right direction is [Ram18&, Corollary 7.2.7]

For the right to left direction, let K O F be a large enough algebraically
closed extension, (K, I') = ACFry(p). From Theorem ACF1y(r) is NSOPy,
but from Fact [L.6.6 S(G(F)) is interpretable in (K, F'), so Th(S(G(F')) is NSOP;.

O
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1.6.3 Pseudo finite fields

Pseudo finite fields were first studied in [Ax68], we will give the definition from
[TZ12].

Definition 1.6.8. Suppose F' is a field. We say that F is pseudo-algebraically
closed if every absolutely irreducible variety over F' has an F-rational point,
or equivalently if it is existentially closed in every regular extension. We say
that F' is pseudo-finite if it is perfect, pseudo-algebraically closed and 1-free
(has exactly one extension of degree n for every n). Being pseudo-algebraically
closed or pseudo-finite is an elementary property [[Z12, Corollary B.4.3, Re-
mark B.4.12], so there are first-order theories PAC, PSF of pseudo-algebraically
closed, pseudo-finite fields respectively.

Proposition 1.6.9. ACFiDdSF is model complete.

Proof. If @ and R are pseudo-finite fields such that @ C R is a relatively
algebraically closed extension, that is QNR = @, then Q@ < R [FJO8, Proposition
20.10.2]. In particular, if @ C R is a regular extension, then it is relatively
algebraically closed, so @ < R. Thus, by Theorem , ACF¥Lp is model
complete. O

Proposition 1.6.10. Every completion of ACFpgr is simple.

Proof. By Proposition , completions of ACFpgr are given by completions
of PSF, which are simple by [TZ12, Corollary 7.5.6], so the result follows from
Theorem . We will give another more direct proof using ACFA, the model
companion of difference fields, which is simple [Kim14, Example 2.6.9].

Let (M, P) = ACFpgr. We will show that there is an automorphism o €
Gal(P/P) such that Fix(c) := {a € P | 0(a) = a} = P. Consider P, the unique
cyclic extension of degree n of P and o, a generator of Gal(P,/P). The fixed
field of o, is P, so the inverse limit of ¢,, is an automorphism of P whose fixed
field is P.

By [Afs14, Corollary 1.2], we can embed (P, o) into (N, ¢’) a model of ACFA,
with Fix(¢’) = P. The structure (N, P) is a reduct of (N, o), so it is simple.
The structures (M, P), (N,P) and (P, P) are models of ACFpsr, and they
can be uniquely expanded to models of ACFlPdSF. Lemma implies that
(P,P) C (M,P), (P,P) C (N, P) are substructures in ACFSgp, because they
all share the same predicate. However, Proposition says that ACFlPdSF is
model complete, so those are elementary substructures. In particular, they are
elementary substructures in ACFpgp. Because (N, P) is simple and (P, P) <
(N, P), we get that (P, P) is simple. But also (P, P) < (M, P), so (M, P) is
simple. O

I.7 Questions

There are several questions that arose in our work, which we did not address in
this paper.

Question 1.7.1. What other classification properties can we lift from T to
ACFp? NTP,, NSOP,, (forn >2)?
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Question 1.7.2. What results still hold when we replace ACF in ACFp with
a different theory of fields? SCF, ACVF? The theory of dense pairs of ACVF

was studied in [Dell4)].

Question 1.7.3. What results still hold when

any strongly minimal theory? See Remark ‘.
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Chapter 11

Fields with a distinguished
submodule

II.1 Introduction

The existentially closed models of a theory are those that are existentially closed
in every model extension. Existentially closed models have a random, or generic,
aspect to them by their definition — every finite quantifier free structure that
exists in some extension will also exist in the existentially closed model. Finding
first-order theories that axiomatize the class of existentially closed models is a
strong tool in studying the generic models, and if the theory is inductive this
will result in the model companion.

In [dE21b], d’Elbée studied the theory of models with a generic substruc-
ture. A particular example of interest to us is the theory of fields of positive
characteristic with a distinguished sub-vector space over a finite subfield, the
class of existentially closed models of this theory is first-order axiomatizable,
which gives rise to a model companion. The theory ACF,G of algebraically
closed fields of characteristic p > 0 with a generic additive subgroup is a specific
case of the above construction, as additive subgroups are sub-vector spaces over
F,. This theory was extensively studied in [dE214].

Furthermore, [dE21b] defines weak-independence and strong-independence,
and gives conditions for a model with a generic substructure to be NSOPy,
where weak-independence is Kim-independence (an introduction to those con-
cepts can be found in the previous chapter). The model companion of fields
of positive characteristic with a sub-vector space over a finite subfield satisfies
those conditions, so it is NSOP,. It was also proved that this model companion
is not simple ([dE21H, Proposition 5.20]).

It is a natural to try and generalize this results to fields that are of character-
istic 0, or vector spaces that are over infinite subfields. Another generalization
is to_consider modules over infinite subrings (a finite subring is a field). In
[dE21h], d’Elbée showed that for fields of characteristic 0 with an additive sub-
group (which is a Z-module), the class of existentially closed models is not
first-order axiomatizable.

However, it is possible to study the existentially closed models of an induc-
tive theory in a different logical setting, namely in Robinson’s logic. In essence,
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it means that instead of studying models and elementary embeddings between
them, we study existentially closed models and embeddings between them (see
the introduction of [PY1§]). Pillay [Pil00] refers to this setting as the Cate-
gory of existentially closed models. This approach was used by Haykazyan and
Kirby [HK21Y] in their study of exponential fields — fields F' with a distin-
guished homomorphism E : F* — F* from the additive group structure to the
multiplicative group structure.

(We note that there is a recent interest _in positive model theory, which is a
generalization of our setting (e.g. [Hay19, Hru20, DK21]]).)

This chapter follows the steps of [HK21h], considering the structure of fields
with a submodule. We will first give a description of the existentially closed
fields with submodules (Theorem [[I.3.7). This description will not in general
be first-order, except for the case of positive characteristic and submodules over
a finite subring (see Remark ) We will then prove that the category of
existentially closed models of this theory is NSOP; (see Theorem ) but not
NTP; (and in particular, not simple; see Theorem [[I.4.2); the appropriate defi-
nitions for these concepts in the category of existentially closed models appear
in Section 7 and are taken from [HK21Db]. The proof of NSOP; will use
weak independence (mentioned above). We will also study strong independence,
which does not help with proving NSOP; but has interesting properties of its
own, including n-amalgamation for every n (see Theorem [1.5.5). In the proofs
we are using a definition of higher amalgamation that is slightly different from
the one found in the literature (see [Hru98, dPKMO06, GKK13]). In the appendix
we study this notion of amalgamation and its relation to independence.

I1.2 Preliminaries

In this section, we will present the definitions and facts needed to work in the
category of existentially closed models. Unless stated otherwise, all definition
and results will be given as they are presented by Haykazyan and Kirby [HK211].

11.2.1 Existentially closed models of an inductive theory

Definition I1.2.1. A model M |= T is called existentially closed if for every ex-
tension M C N =T, and every quantifier-free formula ¢(z,a) with parameters
a€ M, N EJxp(z,a) = M = Jzd(zx,a).

Remark I1.2.2. If T is inductive, then for every A =T we can construct by
transfinite induction an extension A C M such that M |= T is existentially
closed.

Let Emb(T') be the category of models of T with embeddings between them.
Let EC(T) be the full subcategory of Emb(T") consisting of existentially closed
models and embeddings between them (which in particular preserve existential
formulas).

Fact 11.2.3 ([HK21b, Fact 2.3]). For two inductive theories Ty and Tz, the
following are equivalent

1. The theories Ty and Ty have the same universal consequences.
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2. FEvery model of T1 embeds into a model of Ty and vice-versa.
3. The existentially closed models of Ty and Ty are the same.

Two theories T7 and T3 satisfying the above equivalent conditions are called
companions. Thus, EC(T') uniquely determines the theory T' modulo companions
for T inductive.

We will also use the following fact.

Fact 11.2.4 ([HK21b, Fact 2.2]). Let M be a model of an inductive theory T.
The following are equivalent.

1. M is an existentially closed model of T.
2. For every tuple a € M, the type tpé,w (a) is a mazimal existential type.

Remark I1.2.5. In particular, if M is an existentially closed model of T, and
A C M is a subset, then tph! (a/A) is a mazimal existential type over A. Indeed,
let M4 be the model M with added constant symbols for A, and let T')s be the
same theory as T but in the expanded language. Every model of Ta extending
M4 must interpret the constant symbols as A, so M is an existentially closed
model of Ta, as we allow parameters in the definition of existentially closed.
The result then follows from Fact @

11.2.2 Amalgamation and joint embedding

Definition I1.2.6. A model A =T is an amalgamation base for Emb(T) if for
every two models By, By = T and embeddings f1 : A — By and fo : A — B,
then there is a model C' = T and embeddings g; : By — C and g3 : By — C
such that g1 o f1 = g2 0 fa.

Furthermore, A is a disjoint amalgamation base if we can pick g1, go such
that g1(B1) N g2(B2) = g1(f1(A)).

Fact I1.2.7 ([Hod93, Corollary 8.6.8]). Ewvery existentially closed model is a
disjoint amalgamation base.

Definition II1.2.8. The category Emb(T) has the joint embedding property
(JEP) if any two models of T' can be embedded into a third model.

In the category of existentially closed models, extending 7' to an inductive
theory T” with JEP corresponds to choosing a completion in first-order logic.
However, we need to make sure that EC(T”) is contained in EC(T'). This gives
rise to the following definition.

Definition IT1.2.9. An inductive extension 7" of an inductive theory T is called
a JEP-refinement of T if T’ has JEP and every existentially closed model of T’
is an existentially closed model of T’

Fact 11.2.10 ([HK21h, Lemma 2.12]). If A is an amalgamation base for Emb(T),
then T UThz(A) is a JEP-refinement of T.

Furthermore, an existentially closed model of T is a model of a unique JEP-
refinement of T modulo companions.
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11.2.3 Higher amalgamation
We proceed to define higher amalgamation, as it was defined in [HK21b].

Let £ C Emb(T) be a subcategory. Let m > 3, consider n as a set n =
{0,...,n — 1} and consider P(n) and P~ (n) = P(n) \ {n} as categories with a
unique morphism a — b if @ C b. Define a P(n)-system (respectively, P~ (n)-
system) of K to be a functor F from P(n) (respectively, P~ (n)) to K. For each
a € P(n), denote F, = F(a).

Suppose that for every M € K, we have a ternary relation | on subsets of
M. A P(n)-system (P~ (n)-system) F is called independent with respect to | ,
if for every a € P(n) (a € P~(n)) and every b C a,

oL R

Uecy Fe bZdCa
as subsets of F,, where we consider every embedding F; — F, as an inclusion.

Definition I1.2.11. Suppose K, | are as above. Say that K has n-amalgamation
(n > 3) if any independent P~ (n)-system in K can be completed to an in-
dependent P(n)-system. Say that T has n-amalgamation if Emb(T) has n-
amalgamation.

Note that this definition of independent systems and n-amalgamation is not
the same as the one used by other authors, e.g. [Hru98, dAPKM06, GKK13]. It
is, however, similar to the definition of stable systems found in [She90], with the
main difference being that in stable systems all embeddings are inclusions and
everything lives inside the monster model, so there is no amalgamation. This
enables us to use the following fact, which is originally stated for general stable
theories, but will be presented here as in [HK21b, Fact 5.3] where it is stated
specifically for ACF.

Fact I1.2.12 ([She90, Fact XI1.2.5]). Let F' = {F} -, be an independent P(n)-
system of ACF, where every F, is considered as a subset of F,,, and let t C n.
For i < m let 5(i) € P(n) and let a; € Fy;y. Assume that for some formula
¢(To,...,Tm—1) we have F, = ¢(ao,...,am-1). Then there are a; € Fy(ymy
such that Fp, = @y, ..., a,,_q1), and if s(i) C t, then @, = a;.

m—1

In Appendix @ we prove some well known results about higher amalgamation
using our definition, including the fact that ACF has n-amalgamation for every

n (Proposition )

11.2.4 Monster model

We present a notion of saturation for the category of existentially closed models.
It is convenient to work inside a large saturated model, which we will call a
monster model.

This section borrows from [HK21b, §2.4], except for our definition of strong
k-homogeneity and Proposition , see Remark .

Definition I1.2.13. Let T be an inductive theory with JEP, and suppose M
is an existentially closed model of T. Let x be a cardinal.
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e M is called k-saturated if every unitary existential type with parameters
from a set A C M of cardinality less than « is realized in M.

o M is called k-universal if for every A =T, and a tuple a C A with |a| < &,
there exists a tuple b C M realizing tp4 (a) (that is, tp4(a) C tpd (b)).

e M is called k-homogeneous if for any two tuples a,b from M with length
less than x such that a =7 b, and every singleton a’ € M, there exists a
singelton ¥ € M such that aa’ =7 bl'.

e M is called strongly k-homogeneous if for any two tuples a, b from M with
length less than s such that a =3 b, there exists an automorphism o of M
such that o(a) = b.

Remark 11.2.14. If k > |L|, then M is k-universal iff every model A =T of
size less than k can be embedded in M, by Lowenheim-Skolem.

Proposition I1.2.15. In the same settings as above, the following are equiva-
lent:

1. M is k-saturated,
2. M is k*-universal and k-homogeneous
3. M is Ny-universal and k-homogeneous
Furthermore, if k = |M|, the k-homogeneity implies strong k-homogeneity.

Proof. (1) == (2): Suppose M is s-saturated. To prove x*-universality,
let A =T and let a = (a;)i<x € A be a tuple. For a < k, denote a~, =
(ai)ica- We will construct b = (b;);<, satisfying tp4(a), by constructing b,
by induction on a < k. For a« = 1, by JEP there is some model N = T and
embeddings f; : A — N and fo : M — N. fi(ao) realizes tp4(ag) in N, as
it is an existential type. Because M is existentially closed and embeds in NV,
it follows that tp4(ag) is consistent in M, and there is by € M realizing it
by saturation. For o + 1, consider the existential type p(z) = tp4(aa/a<a),
replacing the parameters a~, with b., results in a consistent existential type
q(z) in M, because for every finite conjunction t(z, b<,) of formulas from ¢(x),
we have A | Jz(z,a<y), so M = Jzp(x,bey). By saturation there is some
ba € M satisfying q(z), 80 Booba = beq1 satisfies tp4 (a<qy1). If « is a limit
ordinal, take the union b., = U5<a beg.

To prove k-homogeneity, suppose a,b C M are tuples of length less than x,
and let @’ € M. Consider p(z) = tp2!(a’/a), replacing the parameters a by
b results in a consistent existential type, because for every finite conjunction
¥ (z,b) of formulas from ¢(z), we have A |= Jx(z,a), so M |= Jap(x, b).

(2) = (3): trivial.

(3) = (1): First we will prove that s-universality and x-homogeneity im-
ply k-saturation: Let p(z) be a unitary existential type (Jx| = 1) over A C M of
size less than k. There is some extension N 2 M with an element b € N realiz-
ing p(r). By s-universality, there is some A’Y’ C M that satisfy tpZ (Ab), when
considered as tuples. In particular, we have A’ =3 A in M, so by x-homogeneity
there is some b € M such that A’y =3 Ab”. Thus, b = tpd (b/A) = p(x).

Now, assuming Ng-universality and x-homogeneity, will prove by induction
on A < k that M is A-saturated. For A\ = Ny, it follows from the above claim.
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For AT, we know that M is A-saturated, so by (1) = (2) M is AT-universal.
We also know that M is AT-homogeneous, so by the claim M is A-saturated.
For A a limit cardinal, a set of parameters A C M of size less than J, is also of
size less than p for some p < A.

For the “furthermore” part, if M is |M|-homogeneous and a == b in M, we

can construct an automorphism mapping a to b by the back and forth method.
O

Remark I1.2.16. Our definition of strong k-homogeneity differs from the one
given in [HK21Y], which is

e M 1is called strongly k-homogeneous if for any amalgamation base A of size
less than k and embeddings f1, fo of A in M, there exists an automorphism

o of M such that oo f1 = fo.

However, strong k-homogeneity in our definition implies strong k-homogeneity
in their definition: A is an amalgamation base, so there is a model N =T and
embeddings g1,92 of M in N such that g1 o fi = g2 o fo. With A considered as
a tuple, we have

tp3’ (f1(A)) = tp2 (g1(f1(A))) = tp (92(f2(A))) = tp' (f1(A)),

because M is existentially closed. From our definition of strong homogeneity,
there is an automorphism o of M such that o(f1(A)) = f2(A) considered as
tuples, thus oo f1 = fo.

Call M saturated if it is | M |-saturated. We will call a large saturated model
a monster model. In these settings, monster models are often called universal
domains, or e-universal domains, but we kept the notation of [HK21H].

We will assume that monster models exist. This usually requires some set
theoretic assumptions like the generalized continuum hypothesis, but one can
change the set-theoretic universe without changing any object we are interested
in, ensuring that monster models of large enough sizes exist. One can also
work without a monster model, using only commuting diagrams, but it is less
convenient.

I1.2.5 Model theoretic tree properties

We will present two properties of formulas, TP, and SOP,, adapted to the
category of existentially closed models. The main difference is that the formulas
have to be existential, and there must be an existential formula that witnesses
inconsistency. In the following, let T' be an inductive theory with JEP, and work
inside a monster model M = T

Definition I1.2.17. An existential formula ¢(z,y) (z,y tuples) has TPy with
respect to EC(T) if there is an amalgamation base A |= T, an existential formula
¥(y1,y2) and parameters (a; ;)i j<. from A such that the following hold:

1. for all 0 € w®, the set {(b(x, aiya(i)} is consistent.

2. ¥(y1,y2) implies that ¢(z,y1) A ¢(x,y2) is inconsistent, i.e.

T+ =Fzyy2 [y, y2) A d(x,y1) A d(x, y2)]
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3. for every i,j,k < w, if j # k, then A =¢(a; j,a:x).
If no existential formula has TP2, we say that EC(T') is NTPs.

Definition I1.2.18. An existential formula ¢(z,y) (x,y tuples) has SOP; with
respect to EC(T) if there is an amalgamation base A = T, an existential for-
mula ?(y1,y2) and a binary tree of parameters (ay,),c2<«~ from A such that the
following hold:

1. for every branch o € 2¢, the set {(b(a:, ao.|")} is consistent.

2. ¥(y1,y2) implies that ¢(z,y1) A ¢(x,y2) is inconsistent, i.e.
T F =3zy192[Y(y1,y2) A ¢(2,y1) A (0, y2)]

3. for all n € 2<%, if v >0 ~ (0), then A |= ¥(a, 1y, a).
If no existential formula has SOP;, we say that EC(T) is NSOP;.

Remark 11.2.19. If the class EC(T) is first-order axiomatizable by T', that is
T’ is the model companion of T, then the above definitions are equivalent to T’
being NTPy, NSOP; respectively in the usual first-order sense.

There is a Kim-Pillay style characterization for NSOP; theories in the cat-
egory of existentially closed models. This characterization is due to Haykazyan
and Kirby [HK21b], and is based on a theorem of Chernikov and Ramsey [CR16]
for complete first-order theories.

Fact 11.2.20 ([HK21b, Theorem 6.4]). Let | be a Aut(M) ternary relation
on small subsets of M. Assume that | satisfies the following, for any small
existentially closed model M and tuples a,b from M:

o (Strong finite character) if a /|, b, then there is an existential formula
d(x,b,m) € tpg(a/Mb) such that for any a' realizing ¢, the relation o’ /
L, b holds.

e (Existence over models) a |, M

e (Monotonicity) aa” |, bb" impliesa |, b.

(Symmetry) a J/M b implies b J/M a.

o (Independence theorem) If ¢; J/M ca, by J/M c1, by J/M co and by =3, by
then there exists b with b E]HV[CI b1 and b E?MCQ bs.

Then EC(T') has NSOP;.

It is folklore that the independence theorem is equivalent to 3-amalgamation,
see e.g. the discussion under [Kim14, Definition 9.1.3]. However, different defini-
tions of amalgamation are used by different authors, as noted in the beginning
of Section [[I.2.3. For this reason we include in the Appendix a proof of this
equivalence in our setting (Proposition )
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I1.3 Special models of fields with a submodule

In this section, we will define the theory of fields with a submodule, and give a
characterization of special models that we are interested in: existentially closed
models and amalgamation bases.

11.3.1 Existentially closed models
For the rest of the paper, let R be an integral domain.

Lemma I1.3.1. If A, B,C are R-modules such that B C A, then AN(B+C) =
B+ (ANC).

Proof. Tt is clear that B+ (ANC) C AN (B + C). For the other inclusion,
suppose a € AN (B + C). There are b € B and ¢ € C such that a = b+ ¢, but
bebC A sowegetc=a—be ANC. Thus,a € B+ (ANC). O

Definition I1.3.2. Let Lg.p be the language of rings with a constant symbol for
every element r € R, and a unitary predicate P. Define the theory® F gz module
in the language L. p, to be the theory of fields with the quantifier-free diagram
of R, and P an R-module.

Remark 11.3.3. If M, N = FRr_moduie, then
1. R is a subring of M.
2. M is an Lg,p-substructure of N iff M is a subfield of N and PNNM = Py

Example 11.3.4. If R = Z, then Fy_04ule is the theory of fields of charac-
teristic 0 with an additive subgroup. If R = Q, then Fg_module is the theory
of fields of characteristic 0 with a divisible additive subgroup. If R = F,,, then
FF, —module is the theory of fields of characteristic p with an additive subgroup,
which was studied in [dE21b)].

Definition I1.3.5. Let K be a field containing R. Call a variety V' C K™ R-free
if there is some field extension K’ D K, and a € K'™ a generic point of V over K,
such that a is R-linearly independent over K. That is, if roag+---+rp_16,-1 €
K forr; € R,thenrg=---=7r,_1 =0.

Definition I1.3.6. Let M = F g module be a field with a sub-R-module, and let
0<k<mn,0<s. For a matrix A € Mat, xs(R) and a tuple c € M", call (4,c)
a k-compatible pair if for every rg,...,7,—1 € R,

1. rgAg+ - +7rp_1Ax_1 =0 = rocg+ - +rp_1¢c_1 € Py,

2. for k <i < mn,either A; # roAo+---+rg_1Ax_1, Or roco+- - +Tk_1Ck—1—
ci ¢ Py,

where A; is the i-th row of A.

Theorem I1.3.7. Let M = Fr_module be a field with a sub-R-module. The
model M is existentially closed iff for every R-free variety V. C M?® and k-
compatible pair (A,c), where A € Mat,xs(R), c € M™, there is a point b € V
such that for a = Ab+ ¢, ag,..,ax—1 € Py and ag, .., an—1 ¢ Pyr.

1F stands for the theory of fields, as ACF stands for the theory of algebraically closed fields.
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Proof. For the left to right implication, suppose V, A, c are as above. There
is some field extension M’ DO M with & € M’, such that b’ is a generic point
of V over M. Let a = AV + ¢, and consider M’ as a model of Fg.module,
with Py = Par + (ag, ..., a,_q)r. To show that M is an Lp p-substructure
of M’, we need to show that Py, N M = Pp;. By Lemma , Py N M =
(Pr + (ag, .- a,_1)r) N M = Py + ({ag, ..., a)_,)r N M), so it is enough to
show (ag,...,a},_1)r "M C Py;. Suppose m € (ag,...,a)_;)r N M, we can
write m = roag + -+ - + rp—1a),_; with r; € R. Substitute a] for A;b' + ¢; and
rearrange to get

(rodo+ -+ rp—1Ap—1)b' =m — (roco + - - + rp—1cx—1) € M.

However, b’ is R-linearly independent over M, so we must have rgAg + - -+ +
re_1Ag_1 = 0. This implies that m = rocg + --- + rr_1cx_1, and by k-
compatibility rgcog + -+ + rr_1¢ck_1 € Py, S0 m € Py

Consider the formula

s)=VA N\ Ay+eePA N\ Ay+edP

i<k k<i<n

where |y| = |b'|. We want to show that ¢(y) is satisfied by o' in M’. Tt is
obvious that b € V(M') and A;b' +¢; = a € Py for i < k, it remains to prove
that A;b" + ¢; = a ¢ Py for k < i < n. Assume towards contradiction that
a; € Py for some k < i < n, then there are ro,...,r;—1 € R and p € Py such
that a} = p +roap + -+ + 7x-1a},_,. Substitute a} for A;b’ + ¢; and rearrange
to get

(A; —roAo+ - —rp—1 A1)V =p+roco+ -+ Th_1ck—1 — ¢; € M.

Again, because V' is R-linearly independent over M, this implies A; — rqAg +

= rp_1Ag_1 = 0, s0o A; = rgAy + --- + rp_1Ax_1. It also follows that
p+roco+ -+ Tp_1ck—1 — ¢ = 0,80 rocog + - +TR_1Ck—1 — ¢ = —p € Py, in
contradiction to k-compatibility. ¢(y) is satisfied by & in M’, so by existential
closeness there is some b € V (M), such that a = Ab+c satisfies ag, .., ax—1 € Py,
Ak, ..y Gn—1 ¢ Par, as needed.

For the right to left implication, let M | Fg module satisfy the right-hand
condition, and let M’ = F g module be some model extending M. We need to
show that for every formula (z) which is a conjunction of atomic formulas,
where x = (zg,...,2,—1) is a tuple of variables, if M’ | Jzip(z), then M |
Jzep(x). Atomic formulas in Ly, p take one of the following forms:

1. q
2. q(x) #0,
3. q(x) € P,
4. q(x) ¢ P,

where ¢(x) is a polynomial over M. Let ¥ (x) be a conjunction of atomic for-
mulas. By introducing more variables, we can replace the atomic formulas of
the second form ¢(x) # 0 with z, - ¢(z) = 1, to get an atomic formula of the
first form, because Jz(g(x) # 0) < Iz, z, (2, - ¢(x) = 1). Similarly we can

41



replace the third and fourth forms ¢(x) € P, ¢(x) ¢ P with ¢(z) = zp Az, € P,
q(z) = x, ANz, ¢ P. After those replacements, we are left only with atomic
formulas of the forms ¢(x) =0, x; € P, and z; ¢ P.

Furthermore, suppose o' € M’ witnesses the existence M’ |= 3z (z). For
every ¢ < n, either a; € P or a; ¢ P. Taking the conjunction of ¢ with the
corresponding conditions z; € P or x; ¢ P, we get a stronger formula *(x)
that is still satisfied by a’, and has the additional property that for every i < n
either x; € P or x; ¢ P appears in ¢*(x). Thus, it is enough to prove existential
closeness for formulas with the above property, and we can assume that ¥ (x) is
of the form

Y(x) =W(x) ANxo, ., Th—1 € PA Tk, ..y Tpo1 ¢ P

where W (z) is a conjunction of polynomial equations, i.e. a variety over M.

Let o' € M’ witness the existence M’ = Jz(z). Consider the fraction
field of R, Frac(R) C M. There is some 0 < s < n, and some tuple ¥’ € M's
that is Frac(R)-linearly independent over M, such that M + (a')prac(r) = M @
(V) Frac(r)- Write @’ = Ab' + ¢ for A € Mat,x,(Frac(R)), ¢ € M™. We can
assume without loss of generality that A is a matrix over R, else let 0 #d € R
be the product of the denominators of all elements in A, and replace A,b" with
dA, Lb' to get a matrix over R.

We will prove that (4,c¢) is a k-compatible pair. Let rq,...,r, € R, if
riAi +---+rpAi =0, then

Py o ma) + -+ rga), = (mAy+ -+ rpAp)b +rien + -+ ek

=716+ TECE

but also r1c1+- -+ 7 € M, so0r1c1+ -+ 71rEck € Py, Suppose for k <i<n
that both A; = ri A1 4+ ---+ rpAx and r1¢1 + - - - + rpeg — ¢; € Py, then

ray + -t rgay —a, = (rAy+ A — A + e+ ek — ¢
=rici+ -+ rpep — ¢ € Py

Thus, a; € Py + (a),..,a),)r € Py, a contradiction. Let V' be the locus of &/
over M. The pair (A, c) is k-compatible and V is R-free, so by our assumption
there exists b € V', such that for a = Ab+c we have ay, ..,ar € Py, aga1, .-, an &
Pys. Furthermore, W (Ay + ¢) is contained in V (y), as o’ = Ab' + ¢ belongs to
W,s0a=Ab+ce W. We found a € M"™ such that M = ¢(a), as needed. O

Remark 11.3.8. Let M be an existentially closed model of Fr_moduie- Then
R is definable as a subset of M. Indeed, R = {x € M | Py C Pp}: ‘C7is
clear. For the other direction assume by contradiction that m € M \ R and
mPy C Pu, and consider the structure N = (M(t), Py + RE), where ¢ is
transcendental over M. Then it is easy to check that N is an extension of M
and that t ¢ Py. Thus, N = Jz(x € P Amax ¢ P) (the second conjunct uses
the assumption towards contradiction), and since M is existentially closed, we
get a contradiction. This is essentially the same proof as [dE21Y, Proposition
5.32].

It follows that if R is infinite, then the class of existentially closed models
of FR_module 18 not elementary — else, starting with some existentially closed
model, we could construct by compactness an existentially closed model extending
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it with a strictly larger R. On the other hand, if R is finite, then this class is
elementary, by [dE21Y, Proposition 5.4]. In particular, if R is infinite, the
characterization of existentially closed models given in Theorem is mot
first-order.

11.3.2 Amalgamation bases

Theorem 11.3.9. The amalgamation bases of Fr_moduie aTe precisely the alge-
braically closed fields with sub-R-modules, ACF g_moduie. Furthermore, they are
disjoint amalgamation bases.

Proof. Let M be an algebraically closed fields with a sub-R-module, and f; :
M — My, fo: M — M be embeddings of fields with sub-R-modules. There is
an algebraically closed field N and field embeddings g1 : M1 — N, g2 : My — N
such that g o fi = go 0 fo and M, i;CF My in N, where we identify the fields
with their images under the embeddings. In particular, M; N My = M, because
M 1is algebraically closed.

Give N an Lg,p structure by defining Py = Py, + Pa,. To show that
M, My are Lg.p substructures of NV, we need to show that M, N Py = Py,
and My N Py = Py, will follow from symmetry. By Lemma , MNPy =
M1ﬂ(PM1 +PM2) = PM1+(M1QPM2)7 and we have M1NPy, = MiNMaNPyy, =
M N Py, = P, so MiN Py = Py, + Py = Py, . Thus, M is an amalgamation
base, and from M; N Ms = M it is a disjoint amalgamation base.

Suppose M |= Fpg module is not algebraically closed. There is an element
a € M\ M. Let My = My = M, but define Py, = Pys, Py, = Py +{a)g. Note
that Py, "M = Py, because if p+ra € (Pp+(a)g)NM, then ra € M, sor =0,
which implies p+ra = p € Pyr; thus M C M; is an Ly, p-substructure. Suppose
we could amalgamate M7, Ms to a model N | Fprmodule by embeddings ¢; :
My — N, g2 : My — N, such that g1]|a = g2|m. By changing N, we can assume
that g is an inclusion My C N, and in particular a € Py, € Py. However,
M, = M, so Im(g;) = M and there is some b € M; such that g,(b) = a.
In particular, b € Py, = Py. This would imply a = ¢1(b) = b € M, as
91| = idps, a contradiction. Thus, M is not an amalgamation base. O

IT1.4 Classification
I1.4.1 TP,

We will construct a formula that is TP, in every JEP refinement of Fgr_module,
as per Definition iI~2~17.~ In particular, this will prove that for every JEP re-
finement T, EC(T) is not NTP.

Lemma I1.4.1. If M |E Fr.module s existentially closed, then the index [M :
PM] = 0.

Proof. It M’ 2 M is a large enough field extension, then in particular [M’ :
Pyr] = oo. Consider the Ly, p-structure on M’ given by Py = Py, M is an
L. p-substructure of M’. The fact that [M’ : Pyp] = oo can be expressed by
existential sentences “there exist at least n elements in different P-cosets” for
every n, so by existential closeness we have [M : Py| = oo. O
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Theorem I1.4.2. Let T be some JEP refinement of Fr-modue- The formula
o(z;y,2) =y -x + 2z € P has TPy with respect to EC(T).

Proof. Take the formula ¥(y1, 21;y2,22) to be y1 = ya A 21 — 29 ¢ P. Let
M = T be existentially closed such that |M| > |R| 4+ N, in particular it is an
amalgamation base, and it is existentially closed in Fg module- The fact that
|M| > |R| + o implies in particular that dimpy.cr)(M) > No, so there are
B1, B2, -+ € M such that 1,3, 3s,... are Frac(R)-linearly independent, and
in particular R-linearly independent. By Lemma 7 [M : Py = o0, so
there are vy, 72, -+ € M that are all in different Pps-cosets. Take the sequence
of tuples a;; = (8;,7;). Conditions (2) and (3) of Definition [[I.2.17 obviously
hold, it remains to show (1). Let o € (w\ {0})*\M%, by compactness it is enough
to show that for every n > 0, A, (8 -z + Yo(i) € P) is consistent.

Consider the variety V (zo,z1,...,2,) given by
x1 = Pizo,
Tp = ano-
Let v/ = (b, B1bp, - -, Bnbl) be a generic point of V' in some field extension.
Suppose that for rq,...,r, € R we have

Tob6+’)"1ﬂ1b6++7“nﬂnb/0 GM,

(7“0 +rfL+-+ T‘n,Bn)b() e M,

then ro+7r181 4+ +rnfn = 0, else we would get b, € M. But 1,84,..., 3, are
R-linearly independent, so we must have rg = --- = r,, = 0, thus V is R-free.
Consider the n x (n + 1) matrix

A= )
0 0 1

and the tuple ¢ = (’y(,(l), . ,7g(n)). We claim that A and c¢ are n-compatible.
It is enough to see that the matrix A is of rank n, so if 114y +--- +rp,A, =0,

then ry = --- = r, = 0. From Theorem , it follows that there is a point
b = (bo, B1bo, - .., Brbo) € V such that for

Ab+c = (B1bo + Yo(1), - - - Bnbo + Yo n))
we have 3;bo + Yo (i) € P, as needed. O

Remark I1.4.3. The above implies in particular that every JEP refinement
of FR-module s non-simple, by [HK21l, Proposition A.5], where the definition
for simplicity in the category of existentially closed models is given in [HK211,
Definition A.4].
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I1.4.2 NSOP,

We will show that every for every JEP refinement T of Fgr module, EC(T) is
NSOP;, using Fact . The independence relation that we will use was de-
fined in [dE21b, Definition 3.1], and called weak independence. We will present
the definition for our specific case.

Definition I1.4.4. For a model M E ACFpg module, and subsets A, B,C C
M, say that A and B are weakly independent over C, and denote A J/g B, if

A L2 B and Py 0 (AC + BC) = Py N AC + Py N BC.

Remark 11.4.5. The inclusion Py N AC + Py N BC C Py N (AC + BC) is
always true.

Lemma I1.4.6 (3-amalgamation). ACF g_moduie has 3-amalgamtion, meaning
any weakly independent P~ (3)-system of ACF g_moduie can be completed to a
weakly independent P(3)-system.

Proof. Suppose M = {MS}SE'P*B) is a weakly independent P~ (3)-system of
ACF R-module, and denote Py = Ps,. By Proposition there is some alge-
braically closed field M3 that completes M as an independent system of ACF.
By embedding all the system in M3, we can assume that the embeddings are
inclusions. Define Py = Py + P} + Ps, where i = 3\ {i}, and consider (M3, P3)
as a model of ACF r_module: We need to show that Ms is an L, p-extension of
the rest of the system, that is that P; N M; = P;. By symmetry it is enough to
prove for ¢ = 0,

By Lemma [L3.1, Psn M, = (Py+P,+P;)NM, = Py+(P;+Py)N M, so it is
enough to prove (P;+P5)NMy C Py. Let my € (P;+P;)N Mg, there are p; € P,
D5 € Py such that my = p; +ps. Fact II.2.1§ applied for t = 1 implies that there
exists myoy € My}, my2y € M2y such that mysy = p; + myg), in particular
pi € Moy +M{zy. However, by weak independence in Mj, Py N (Mo +Moy) =
Proy + Py2y, so pj € Pyoy + Py2y. Similarly, by applying Fact for t = 2,
we get ps € Proy + Py1y. Altogether, mg = p; + ps € Pioy + P1y + Ppay. By
Lemma 7 (P{g} + P{l} + P{Q}) NMy = P{o} N My + (P{l} + P{Q}), but
Py1y + Ppay C Py, so it is enough to prove Pyoy N My C Fy. ACF-independence
of the P(3)-system implies that Mo, L;(;F Mg in M3, and My is algebraically
closed so Mgy N My = My. Thus,

P{O} NMy= P{O} N M{O} N My = P{O} NMy=P CPF,.

It remains to show that the system is weakly independent. By symmetry,
there are only two general cases we need to check

L My Ly v, MiMs
w
2. My LY, M.
Because the system is ACF-independent, we already have M \LiﬁF} Mz M Ms,
1 2
M L?/[(;F Mjoy. For the first case, notice that P3 N My = Py, P3N M;jM; 2
P; + P, so

PgﬁM()-f—PgﬁMiMQ2P@+P1+PQ=P3:_)Pgﬂ(Mo—l—M()Mi)
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where the other inclusion is obvious (Remark ) For the second case, by
Lemma Py (Mg + Moy) = (Py+ P + Py) N (M + Mygy) = Py + (Py +
PQ) N (M() +M{0}), so it is enough to show (Pi —I—PQ) N (M() +M{0}) CPh —I—P{O}.
Let pj 4+ ps € (P + Py) N (Mg + Moy), where p; € Py, p; € P;. We can write
pi t+Pps = mg+myoy, where mg € Mg, myoy € Myoy. By Fact applied for
t = 1, there are m'{o} € Moy, mygy € M2y such that p; —i—mf{o} = myay +MJo},
so p; € Moy + M{z. By weak independence in Mj, P; N (Mygy + Migy) =
Pyoy + Py2y, so pj € Pjoy + Py2;. Similarly, by applying Fact for t = 2,
Ps € P{O} + P{l}. Thus, ps +ps € P{o} + P{l} + P{g} C P+ P{O}. O

Lemma I1.4.7. Suppose M is a monster model of a JEP-refinement of Fr_module-
For a singleton a € M, a tuple b € M and C C M, ifa € C(b), then there is a for-
mula ¢(x,b, c) € tp3(a/Ch) isolating the type, in the sense that if a’ = ¢(x,b,c)
then o’ =2, a.

Furthermore, we can choose ¢(x,b,c) in such a way that for any a’, b’ € M,
E é(a',V,c) implies o' € C(b').

Proof. We have a € C(b), so there is some non-zero polynomial ¢(x,b,c) with
a as a root, where ¢ € C. In particular, the formula ¢(x,b,¢) = 0 belongs to
tpg(a/Cb) and has finitely many realizations. Take some formula ¢(x,b,c) €
tpg(a/Cb) with a minimal number of realizations, a conjunction of existential
formulas is existential, so ¢(x, b, ¢) must imply every formula in tp5(a/Cb). Let
a' = é(x,b,c), it follows that ¢’ = tp5(a/Ch), that is tpg(a’/Cb) 2 tpz(a/CH).
On the other hand, Remark says that tpg(a/Cb) is a maximal existential
type, so tpz(a’/Cb) = tp5(a/Cb).

For the “furthermore” part, we can assume that ¢(z,y,c) F q(z,y,¢) =
0 A Ja'q(a’,y,c) # 0, because for y = b we know it is true, so we can take the
conjunction of this formula with ¢(z,y, ¢) without changing ¢(x,b,c). Thus, if
E ¢(d’, b, ¢), then in particular @’ is a root of the non-zero polynomial ¢(x, ¥, ¢),

soa’ € C(V). O

Theorem I1.4.8. Suppose T is a JEP-refinement of Fr_module, then EC(T) has
NSOP;.

Proof. We will use Fact [1.2.2(, with the weak independence | .

Let M be a monster model of T', and let P = Py. Invariance, symmetry and
existence over models are trivial. For monotonicity, suppose A, B,C,D C M|
and A Lg BD. By monotonicity of independence in ACF, we have A LgCF B.
We also get that

PN (AC + BC)=Pn(AC + BDC)n (AC + BO)
=(PNAC+ PNBDC)N (AC + BO)
=PNAC+ PnNBDCN(AC + BC)
=PNAC+ Pn(BDCnNAC + BC)

where the last two equalities follow from Lemma , because P @ C
AC+BC and BC € BDC. However, A | 2" BD implies that BDCNAC = C,

so we get PN (AC + BO) = PNAC + PN BC. Thus, A | [ B.
Propositi will give us the independence theorem. Note that to use
u 2.1

Proposition we need 3-amalgamation of EC(T), but Lemma [[I.4.6 gives
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us 3-amalgamation of ACF g_module. However, if we start with a weakly inde-
pendent P~ (3)-system {As} cp- (3 of EC(T'), we can turn it into a system of
ACF Romodule by taking the algebraic closure A,. The system {A.}_ ep-(3) 18

still weakly independent because weak independence is algebraic, i.e. A J;é B
implies ZL%F. The completion of the system, A3 = ACFg_module, can be
expanded to a model of T, because A3 is a model of Fr_moqule UThs(Ag), which
is a companion of T' (Fact )

For strong finite character, suppose a /J_fj\'} b, and let A = M(a), B = M(b).

If a /JJILCF b, then the result follows from strong finite character in ACF. Else,
there is some s € PN (A+ B)\(PNA+ PNDB). There are « € A, 8 € B
such that s = a+ 8. We claim that 8 ¢ M + PN B. Otherwise, there are some
m € M, p € PN B such that 8 = m+p, and so s = a+m+p. This implies that
s—p=a+mePNA thuss=a+m+pe PNA+ PN B, a contradiction.

There are formulas ¢, (y,a,m) € tpg(a/Ma) and ¢¥g(z,b,m) € tp5(8/Mb)
isolating their respective types as in Lemma . Let A(z, b, m) be the formula

Izaly, z,m) As(z,b,m) Ny + 2z € P,

we have A(z,b,m) € tps(a/Mb).

Suppose that a’ |= A(z, b, m), and assume towards contradiction that a’ \LJL(} b.
Let A’ = M(a’), from a’Lﬁbe we get A N B = M. Let o/,3 witness
the existence in A(a’,b,m), that is o' = ¥a(y,a’,m), 8’ = ¥s(z,b,m), and
s':=a'+ ' € P. We have 8’ =3, B, in particular 8’ € B and 8/ ¢ M +PNB,
and by the “furthermore” part of Lemma [1.4.7, we can assume that o/ € A’.
By weak independence, PN (A’+ B) = PNA"+ PN B, so there are o € PN A/,
3" € PNB such that s’ = o”+8". It follows that o/'—a’ = 8'—3" € A/NB = M,
but then 8’ =" —a’ + 5" € M + (BN P), a contradiction. O

Remark 11.4.9. In a recent paper [DK21], Dobrowolski and Kamsma general-
ized the notion of Kim-independence to positive logic, which is a more general
context than the one we deal with. They also prove that the independence
relation defined on exponential fields in [HK21Y] to prove NSOP; is actually
Kim-independence. A similar strategy as the one in |DK21, §10.2] seems to
yield that | " is Kim-independence: extension and transitivity of | * are sim-
ilar to [dE21a, Theorem 1.4] and the fact that Fr_moduie s Hausdorff follows
from Theorem .

I1.5 Higher amalgamation of strong independence

In the previous section, we used the weak independence defined in [dE21Db,
Definition 3.1]. In the above cited definition, another independence called strong
independence was defined. Strong independence is less useful for us in the study
of NSOP;, because the proof of strong finite character does not work for strong
independence, yet it still has properties worth studying. In this section we will
prove that strong independence has n-amalgamation for every n > 3.

Note that in [HK21b], Haykazyan and Kirby defined a single independence
relation that had both strong finite character and n-amalgamation. This does
not seem to be the case in our situation.
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Definition I1.5.1. For a model M = ACF g_module, and subsets A, B,C C M,
say that A and B are strongly independent over C, and denote A J/SCB7 if

A |2 B and Py NABC = Py NAC + Py N BC.

Lemma I1.5.2. The following are a few model theoretic properties of strong
independence that we will use.

o (Algebraicity) If A |, B, then AC J/%BiC’
e (Monotonicity) If A | ¢, BD, then A | B.

Pro%”. Algebraicity is obvious from the definition, and from algebraicity of
J/A ¥ For monotonicity, suppose A J/ZBD, from monotonicity of J/ACF

we have A LgCF B. We also get that

PN (ABC)=PNABDCNABC
=(PNAC + PnBDC)NABC
=PNAC+ PnBDCNABC
=PNAC+PnNBC,

where the second equality is from the definition of strong independence, the third

equality is from Lemma , and the last equality is from AB J/ggF BDC,

which we get from base monotonicity of J/ACF. O

Notation I1.5.3. A subset I C P(n) is called downward-closed if a € I and
bCa implybel.

For a P(n) (P~ (n))-system F of fields with a sub-R-module, and I C P(n)
(P~ (n)) non-empty downward-closed, let

E:Un

acl

Pr =) Pg,

acl
Also let Fcy = Fp-(q), and the same for P.

Lemma II.5.4. A P(n) (P~ (n))-system M of ACF r_moduie s strongly in-
dependent iff it is | ““"-independent and for every a € P(n) (P~(n)) and
I C P(a) non-empty downward-closed (if a € I and b C a, then b € I), we have
P, N M, = P

Proof. For the left to right direction, suppose M is strongly independent. The
proof is by induction on |I|. If |I| = 1, then we must have I = {@}, so this
case is trivial as P, N My = Py. If |I| > 1, then take a maximal b € I and let
I' = I\ {b}, which is also non-empty downward-closed. By strong independence,
M, J/?w@ Ubgcga M.. For every ¢ € I' we have b € ¢ C a, so by monotonicity

and algebraicity (Lemma ) My |3, M. It follows that

P, NM; =P, "\ MyMjp
— (P Mp) + (Po 1 My
=h+ Pr =P,
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where the second equality is from strong independence and the third equality is
from the induction assumption.
For the right to left direction, we need to prove M, J/jw@ Ubgeca Me. Con-

sider the downward-closed families I’ = {¢ | b € ¢ C a} and I = I’ U {b}. With
this notation, We need to prove M, \L;[Cb M. By the assumption,

P, NMyMp =P, NM;=Pr=P,+ Pp
(P, My) + (Py 1 M),

and we already know M, J/;Cch M/, so this finishes the proof. O

Theorem I1.5.5 (n-amalgamation). Any strongly independent P~ (n)-system
of ACFR._modute can be completed to a strongly independent P(n)-system.

Proof. Suppose M = (M,)qep-(ay) is a strongly independent P~ (n)-system of
ACF R.module- By Proposition , there is a field M,, completing M as an
independent system of ACF. Define P, := Pc,, = Y scn Ps, we need to show
that (M, P,) completes a strongly independent system. For this we will need
the following claim:

Claim. For every I,J C P(n) non-empty downward-closed, My N P; C Py.

Suppose we proved this claim. For every a € P(n), if we take I = P(a)
and J = P(n), then we will get M, N P, C P,, and the other inclusion is
obvious, so (M, P,) completes a system of ACFg_module- Taking J = P(a) and
I C P(a), we'll get M;NP, C Py, and again the other inclusion is obvious, so by
Lemma the system is strongly independent. All that remains is proving
the claim.

We will prove the claim by induction on |IJ|. The base case is |I.J]| = 1,
which must mean I = J = {0}, which is trivial. In the general case, first notice
that if J = P(n), then Py = P,, = Pp- (5, so without loss of generality we can
assume J C P~ (n). If J C I, then it is also trivial, else take some maximal
¢ € J such that ¢ ¢ I, and consider J' = J \ {c}, which is also non-empty
downward-closed.

We have P; = P. + Pjs, so we need to prove that M; N (P. + P;/) C P;.
Suppose p. + py € My N (P.+ Py) for p. € P., pjs € Py.. In particular, p. €
My . Remember that My = J,c;; Ma, so there is a tuple m € (J, oy p M,
such that ¢(p.,m) = 0 for some non-zero polynomial ¢(x,m). By Fact
there is a tuple m’ € U,c;;» Mane such that g(p.,m’) = 0 and q(z,m’) is a
non-zero polynomial. Let K = {a€1J' |aCc} = {anNc|aelJ}, we get
that p. € Mg. By Lemma 154, P.N Mg = Pk C Pry, so p. € Pry.
Also, py € Py C Pry, s0 p.+ py € Pry. We know that ¢ ¢ IJ’, so in
particular |I.J'| < |I.J|, and by the induction hypothesis M; N Pry C Pr. Thus,
pe + py € Pr, as needed. O
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Appendix A

Results on higher
amalgamation

Our definition of independent systems, which we borrowed from [HK21b]. is
not the same the one used by other authors, e.g. [Hru98, dPKMO06, GKK13].
It follows that our notion of n-amalgamation is different from the one used in
those papers, and adapting results from one definition to another is not trivial.
In this appendix we prove well known results about higher amalgamation, using
our definition.

A.1 Higher amalgamation of ACF

Under the common definition, ACF has n-amalgamation for every n. More
generally, [dPKMO06, Proposition 1.6] proves that any stable theory has n-
amalgamation over a model for all n. In this section we prove that ACF has
n-amalgamation per our definition.

First, recall that for fields A, B, C such that C' C AN B, we say that A is
linearly disjoint from B over C, and denote A \Ll B, if whenever ag, ... ,a,-1 €
A are linearly independent over C' they are also linearly independent over B.
Equivalently, A is linearly disjoint from B over C iff the canonical map A® B —
A[B] is an isomorphism. In particular, if A J/lc B and we have maps f: A > K
and g : B — K (for some field K) such that f|c = g|c, then we can jointly
extend them to a map A.B — K. For more information, see Section or
[Lan72, §I11.1.a].

Lemma A.1.1. Let F = {Fa},cp(,) be an independent P(n)-system of ACF,
where all embeddings are subset-inclusions. Suppose a,bg,...,bp_1 C n, then

l
F, L Foy...Fy ..

Fanbg - Fanby,_,

Proof. Suppose Y . «;f; = 0 for a; € F, and 3; € Fy, ... Fp,_,. We can_write
Bi = qi(Bi0; - - -, Bi,k—1) for B; j € Fy, and ¢; a rational function. By Fact H.2.1§,
there exist v; ; € Funp, such that »; a;qi(7i,0,--,7ik—1) = 0. Denote

Vi = @i (V5,00 -y Vik—1) € Farbg - - - Farbg_15
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we have ), a;7y; = 0 as needed. O

Lemma A.1.2. Let F' = {Fo},cp(,) (n > 0) be an independent P(n)-system
of ACF, where all embeddings are subset-inclusions. Suppose K is another field,
and for every a C n there is an embedding 1, : F, — K, such that T,|p, = T
for b C a C n. Furthermore, suppose that T is a transcendence basis of F,, over
Uacn Fa and that S C K is algebraically independent over \J,c,, Ta(Fa) with
|S| = |T|. Then there exists an embedding 1, : F,, — K such that 7,|p, = T,
foraCn and 7,(T) = S.

Proof. For i,j < n, denote i = n\ {i} and 7,j = n \ {i,j}. We will build by
induction maps oy, : Fy. .. Fe—e — K such that crm|p2 = 7; for i <m < n. For
m = 1, set oy to be 73. Suppose we defined o,,, by Lemma |A.1.
1
Fs, J/ F%"'P%;:T
F—

O,m"'Fm:?m
Furthermore, for every i < m

Tl b, = Tom = Rl = Omln

i,m i,m

S0 T and oy, coincide on the base of the independence. Thus, there exists a
map o1 ¢ Fy... Fz — K such that 0'm+1|F6.“F1;_\1 =0opm and Omi1|F, = T

Once we built o, for every 1 < m < n, extend o, : F5... F— — K to

an embedding 7, : F;, — K by mapping T to S and extending to the algebraic
closure. O

Proposition A.1.3. ACF has n-amalgamation for every m, with respect to
non-forking independence.

Proof. Let F' = {F,},cp-(,) be an independent P~ (n)-system of ACF with
embeddings 7,4 : £, — F, for b C a. For every 0 C a C n, let T, be a

>=

transcendence basis of F, over |J,c, 7,a(F»). By induction on |al, it follows
that -

Fo=7a(Fo)( |J ma(T).
0CbCa

Let F, be some algebraically closed field extension of Fy, with a large enough
transcendence degree over Fy. Let {Sq}yc,c, be some disjoint family of subsets
of F), such that |S,| = |T,| and Uyc ,c,, Sa is algebraically independent over F.
We will extend F to a P(n)-system by defining embeddings 7, ., : Fy, — F}, for
all a C n. The embeddings 7, , will be built by induction on |a.

For a = 0, define 7y, : Fy — F, to be the inclusion map. For a # 0,
suppose we built 7, ,, for every b C a. Consider {7, ,(F})},, as an independent
P(a)-system (where the embeddings are subset-inclusions). By Lemma ,
there exist an embedding 7, : F,, — £, such that 7,, 07,4 =T, for b C a
and 74,5, (Ty) = Sa-

This completes F to a P(n)-system, it remains to prove independence. Con-
sider all {F,},-, as subsets of F, by taking their image under 7,,. No-
tice that by the way we defined 7,, (specifically, because Ton(Fp) = Fp and
Tan(Ta) = Sq), we have that after taking the image under 7, ,,

Fo=Fy( |J S

0CbCa
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We need to prove that for every a Cn

ACF
R, L U F.
Ubganachn

which is the same, up to taking algebraic closures, as

F( | Sa) AjF F( | S

PCdCa F@(U@gbga Sb) aZcCn

This follows from the fact that S, is algebraically independent over Fyy(U,g.c,, Sc)-

A.2 The independence theorem

It is a well known fact in the folklore that the independence theorem is equivalent
to 3-amalgamation. In our case there are two differences, the definition of 3-
amalgamation is different and we work in the category of existentially closed
models. We reprove this equivalence in our setting.

Proposition A.2.1. Let M be a monster model of an inductive theory T with
JEP. Suppose that there is an ternary relation | on subsets of M satisfying
invariance, existence, monotonicity, symmetry, and extension. For M € EC(T),
the following are equivalent:

1. (8-amalgamation) every independent P~ (3)-system of EC(T) over M can
be completed to an independent P(3)-system of EC(T') (a system F' is over
M if Fp=M).

2. (strengthened independence theorem) for tuples c1, ca, b1, ba such that ¢ \J/M ca,
b1 \LM ci, by J/M ca and by =3 by, there exists b such that b E%/[CI b1,
b=1., b2, and b Lyyaee ber | e, bea | .

Proof. (1) = (2): We can find existentially closed models Cy,Cy € EC(T)
such that M¢; C C; (i = 1,2) and Cy J/M Cy — start with some Mc; C Cy €
EC(T), and using extension and invariance move it by an automorphism fixing
Mec; so that Oy \LM co, then do the same with some Mcy C Cy € EC(T). By
extension, we can find b} =3, b; (i = 1,2) such that b] L ,; Ci- Note that

b, =3, by =3, by =3, ).

We can find existentially closed models MV, C B; € EC(T) such that By =3, Ba
and B; |, C; (i =1,2) — start with some Mb} C By € EC(T), as before use
extension and invariance to assume By | o C1, then let By be the image of By
under an automorphism given by b} =3, b5, by extension and invariance we can
move By by an automorphism fixing Mb), such that Ba | " Cs.

Let Ny, N1, No C M be some existentially closed models such that Cy,Cy C
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Ny, C1,B1 € Ny and Cy, By C N3, and consider the P~ (3)-system

T>< ><T
\T/

where all the arrows are inclusions, except for ¢ which maps B; to By, fixing
M. The above system is independent, so it can be completed to an independent

P(3)-system
v Tﬁ\
T >< < T
N T A

We can expand N to the monster M, and by Remark [1.2.16 we can expand
To, T1, T2 to automorphisms of M. By applying 7, ! to M, we can assume that

/Tﬁ\
T>< ><T
\T/

Let b = 11(b}) = m2(b%). By following the diagram, we see that 7 fixes M¢;y and
To fixes Mco, so

b= Mc1 b/ _?\4c1 bla

b =3, bh =3sc, bo-

The independences we need to show follow from the fact that the system is
independent (using monotonicity).

(2) = (1): For the other direction, let F' be an independent P~ (3)-system
over M. We will show that all but one of the embeddings can be assumed to be
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inclusions:
Fiony Fro2y Frizy

[ X T

Froy Fry Fray

~ 17

Fy

Start by replacing Fy, Fioy, Fy1) with their images in Fyo1y. Now move Fgg)
so that the embedding Fyoy — F{g2; would be an inclusion (the system stays
independent by invariance), and replace Fypy with its image in Fygpy. Finally,
move F(2y so that the embedding F{1y — F{12; would be an inclusion. We are
left only with Fyoy Z F{y2y, which we can’t assume to be an inclusion.

Recall that M = Fj, and consider ¢; = Fyoy, c2 = Fy13, by = Fyz; and
by = o(b1) as tuples. The conditions for the independence theorem hold from
the independent system, so there is some b satisfying b =pse, b1, b =pre, b2,
b | a C1C2, ber | 2 €2 and beg | €1 There are automorphisms 7q, 7, such
that 71 : bycy — bey, T2 : bacy +— bea, so the following diagram commutes:

e,

Frony Flozy Frizy
Floy Fry Fray

1

We have b | 2y €1C2, SO by extension, by possibly changing b and thus also
changing 71, 7o while fixing M ¢ co, we have b J/M Fro1y, which is Fyoy \LF@ Fro1y-
We also know ber |,

Similarly, we get F(12) J“Fm Fyoy. Next, by existence, Froy Fi1y |

¢z, s0 by extension, possibly changing 71, we get Figay | y Fyy.

Froy Fray L 1021123,
so by extension and changing F(o;} (really, its embedding into M) we get that
F{Ol} \LF{O}F{” F{OZ}F{IQ} . The same can be done with F{OQ} \L F{Ol}F{IQ}
and F{12} J/F{l}F(z}
serve FioyFy1)F(2y, so they preserve the independences already established.

This gives us an independent P(3)-system that completes the given indepen-
dent P~ (3)-system. O

Froy Fyzy
Fyo1)Fyo2;. Notice that the automorphisms we take pre-

54



Bibliography

[Ad107]

[Afs14]

[AS27]

[Ax68]

[BP8S]

[BYPVO03]

[Casl1]

[Cha9s]

[Cha99]

[Cha02]

[Chal9]

[CK90]

[CR16]

Hans Adler. Introduction to theories without the independence
property, 2007.

Bijan Afshordel. Generic automorphisms with prescribed fixed
fields. J. Symb. Log., 79(4):985-1000, 2014.

Emil Artin and Otto Schreier. Algebraische Konstruktion reeller
Korper. Abh. Math. Sem. Univ. Hamburg, 5(1):85-99, 1927.

James Ax. The elementary theory of finite fields. Ann. of Math.
(2), 88:239-271, 1968.

Elisabeth Bouscaren and Bruno Poizat. Des belles paires aux beaux
uples. J. Symbolic Logic, 53(2):434-442, 1988.

Itay Ben-Yaacov, Anand Pillay, and Evgueni Vassiliev. Lovely pairs
of models. Ann. Pure Appl. Logic, 122(1-3):235-261, 2003.

Enrique Casanovas. Simple theories and hyperimaginaries, vol-
ume 39 of Lecture Notes in Logic. Association for Symbolic Logic,
Chicago, IL; Cambridge University Press, Cambridge, 2011.

Zoé Chatzidakis. Model theory of profinite groups having the Iwa-
sawa property. [llinois J. Math., 42(1):70-96, 1998.

Zoé Chatzidakis. Simplicity and independence for pseudo-
algebraically closed fields. In Models and computability (Leeds,
1997), volume 259 of London Math. Soc. Lecture Note Ser., pages
41-61. Cambridge Univ. Press, Cambridge, 1999.

Zoé Chatzidakis. Properties of forking in w-free pseudo-
algebraically closed fields. J. Symbolic Logic, 67(3):957-996, 2002.

Zoé Chatzidakis. Amalgamation of types in pseudo-algebraically
closed fields and applications. J. Math. Log., 19(2):1950006, 28,
2019.

C. C. Chang and H. J. Keisler. Model theory, volume 73 of Stud-
tes in Logic and the Foundations of Mathematics. North-Holland
Publishing Co., Amsterdam, third edition, 1990.

Artem Chernikov and Nicholas Ramsey. On model-theoretic tree
properties. J. Math. Log., 16(2):1650009, 41, 2016.

55



[CS15]

[CvdDMS80]

[CvdDMS1]

[CZ01]

[dE21a)

[dE21D)

[Del12]

[DK21]

[dPKMO6]

[FJO8]

[GKK13]

[Hay19]

[HK21a]

[HK21b]

[HKR18]

Artem Chernikov and Pierre Simon. Externally definable sets and
dependent pairs II. Trans. Amer. Math. Soc., 367(7):5217-5235,
2015.

Gregory Cherlin, Lou van den Dries, and Angus Macintyre. The
elementary theory of regularly closed fields. preprint, 1980.

Gregory Cherlin, Lou van den Dries, and Angus Macintyre. De-
cidability and undecidability theorems for PAC-fields. Bull. Amer.
Math. Soc. (N.S.), 4(1):101-104, 1981.

Enrique Casanovas and Martin Ziegler. Stable theories with a new
predicate. J. Symbolic Logic, 66(3):1127-1140, 2001.

Christian d” Elbée. Forking, imaginaries and other fetures of acfg.
The Journal of Symbolic Logic, page 1-34, Jun 2021.

Christian d’ Elbée. Generic expansions by a reduct. Journal of
Mathematical Logic, page 2150016, Jan 2021.

Francoise Delon. Elimination des quantificateurs dans les paires de
corps algébriquement clos. Confluentes Math., 4(2):1250003, 11,
2012.

Jan Dobrowolski and Mark Kamsma. Kim-independence in positive
logic, 2021.

Tristram de Piro, Byunghan Kim, and Jessica Millar. Constructing
the hyperdefinable group from the group configuration. J. Math.
Log., 6(2):121-139, 2006.

Michael D. Fried and Moshe Jarden. Field arithmetic, volume 11
of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A
Series of Modern Surveys in Mathematics [Results in Mathemat-
ics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics]. Springer-Verlag, Berlin, third edition, 2008. Revised
by Jarden.

John Goodrick, Byunghan Kim, and Alexei Kolesnikov. Amalga-
mation functors and boundary properties in simple theories. Israel
J. Math., 193(1):169-207, 2013.

Levon Haykazyan. Spaces of types in positive model theory. J.
Symb. Log., 84(2):833-848, 2019.

Yatir Halevi and Itay Kaplan. Saturated models for the working
model theorist, 2021.

Levon Haykazyan and Jonathan Kirby. Existentially closed expo-
nential fields. Israel J. Math., 241(1):89-117, 2021.

Martin Hils, Moshe Kamensky, and Silvain Rideau. Imaginaries
in separably closed valued fields. Proc. Lond. Math. Soc. (3),
116(6):1457-1488, 2018.

56



[Hod93]

[Hru9g)]

[Hru20]
11520]

[Kei64]

[Kei67]

[Kim14]

[KR20]

[KS14]

[Lan72]

[Mac08]

[Mor96]

[MPZ20]

[Pil98]

[Pil00]

[Poi83]

[PY18]

Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cam-
bridge, 1993.

E. Hrushovski. Simplicity and the lascar group. Technical report,
1998.

Ehud Hrushovski. Definability patterns and their symmetries, 2020.

Franziska Jahnke and Pierre Simon. NIP henselian valued fields.
Arch. Math. Logic, 59(1-2):167-178, 2020.

H. Jerome Keisler. Complete theories of algebraically closed fields
with distinguished subfields. Michigan Math. J., 11:71-81, 1964.

H. Jerome Keisler. Ultraproducts which are not saturated. J.
Symbolic Logic, 32:23-46, 1967.

Byunghan Kim. Simplicity theory, volume 53 of Ozford Logic
Guides. Oxford University Press, Oxford, 2014.

Itay Kaplan and Nicholas Ramsey. On Kim-independence. J. Fur.
Math. Soc. (JEMS), 22(5):1423-1474, 2020.

Itay Kaplan and Pierre Simon. Witnessing dp-rank. Notre Dame
J. Form. Log., 55(3):419-429, 2014.

Serge Lang. Introduction to algebraic geometry. Addison-Wesley
Publishing Co., Inc., Reading, Mass., 1972. Third printing, with
corrections.

Angus Macintyre. Algebra and geometry in basic model theory
of fields, 2008. http://www.logique. jussieu.fr/modnet/
Publications/Introductory’20Notes¥%20and’%20surveys/
macintyre.pdf.

Patrick Morandi. Field and Galois theory, volume 167 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1996.

Amador Martin-Pizarro and Martin Ziegler. Equational theories of
fields. J. Symb. Log., 85(2):828-851, 2020.

Anand Pillay. The model-theoretic content of Lang’s conjecture. In
Model theory and algebraic geometry, volume 1696 of Lecture Notes
in Math., pages 101-106. Springer, Berlin, 1998.

Anand Pillay. Forking in the category of existentially closed struc-
tures. In Connections between model theory and algebraic and ana-
lytic geometry, volume 6 of Quad. Mat., pages 23—42. Dept. Math.,
Seconda Univ. Napoli, Caserta, 2000.

Bruno Poizat. Paires de structures stables. J. Symbolic Logic,
48(2):239-249, 1983.

Bruno Poizat and Aibat Yeshkeyev. Positive Jonsson theories. Log.
Univers., 12(1-2):101-127, 2018.

57


http://www.logique.jussieu.fr/modnet/Publications/Introductory%20Notes%20and%20surveys/macintyre.pdf
http://www.logique.jussieu.fr/modnet/Publications/Introductory%20Notes%20and%20surveys/macintyre.pdf
http://www.logique.jussieu.fr/modnet/Publications/Introductory%20Notes%20and%20surveys/macintyre.pdf

[Ram18]

[Rob59]

[She90]

[Sim15]

[Tar51]

[TZ12]

Samuel Nicholas Ramsey. Independence, Amalgamation, and Trees.
ProQuest LLC, Ann Arbor, MI, 2018. Thesis (Ph.D.)-University
of California, Berkeley.

A. Robinson. Solution of a problem of Tarski. Fund. Math., 47:179—
204, 1959.

S. Shelah. Classification theory and the number of nonisomor-
phic models, volume 92 of Studies in Logic and the Foundations of
Mathematics. North-Holland Publishing Co., Amsterdam, second
edition, 1990.

Pierre Simon. A guide to NIP theories, volume 44 of Lecture Notes
in Logic. Association for Symbolic Logic, Chicago, IL; Cambridge
Scientific Publishers, Cambridge, 2015.

Alfred Tarski. A decision method for elementary algebra and ge-
ometry. University of California Press, Berkeley and Los Angeles,
Calif., 1951. 2nd ed.

Katrin Tent and Martin Ziegler. A course in model theory, vol-
ume 40 of Lecture Notes in Logic. Association for Symbolic Logic,
La Jolla, CA; Cambridge University Press, Cambridge, 2012.

58



	Algebraically closed fields with a distinguished subfield
	Introduction
	Preliminaries
	Linear disjointness
	Language of regular extensions
	NSOP1

	Basic properties of ACFT
	Delon's language
	Substructures and isomorphisms
	Saturated models

	Quantifier elimination and more
	Completions
	Quantifier elimination
	Model completeness

	Classification and independence
	Kim-dividing
	NSOP1, simplicity
	Stability
	NIP

	Applications
	Tuples of algebraically closed fields
	Complete system of a Galois group
	Pseudo finite fields

	Questions

	Fields with a distinguished submodule
	Introduction
	Preliminaries
	Existentially closed models of an inductive theory
	Amalgamation and joint embedding
	Higher amalgamation
	Monster model
	Model theoretic tree properties

	Special models of fields with a submodule
	Existentially closed models
	Amalgamation bases

	Classification
	TP2
	NSOP1

	Higher amalgamation of strong independence

	Results on higher amalgamation
	Higher amalgamation of ACF
	The independence theorem


