
Nullstelenzats seminar - proof of the chromatic nullstelenzats

Leor Neuhauser

1 Reminder

This week, we will finish the proof of the chromatic nullstelenzats theorem. Let us first recall the
definition and the statement of the theorem

Definition 1.1. A presentable ∞-category C is called nullstelenzatsian if every compact non-
terminal Y ∈ C ω admits a map to the initial object. A non-terminal object X ∈ C is called
nullstelenzatsian if CX/ is nullstelenzatsian

Hilbert’s nullstelenzats states that the nullstelenzatsian commutative rings are the algebraically
closed fields. The chromatic nullstelenzats provides an analog of algebraically closed fields in the
chromatic world, in the form of Lubin-Tate rings.

Theorem 1.2. An E∞-algebra R ∈ CAlg(SpT (n)) is nullstelenzatsian if and only if R ≃ E(L) for
some algebraically closed field L.

Our efforts up to now were in proving the “if” direction - that E(L) is nullstelenzatsian. We will
recall the different ingredients, and show how they add up to a proof.

2 E(L) is nullstelenzatsian

Denote k = Fp, E = E(k) and CAlgE = CAlgE(SpT (n)).
We defined three nilpotence detecting map f, g, h ∈ CAlgE , whose definition we will recall when
they come into play, and using a small objects argument argued that every S ∈ CAlgE has some
nilpotence detecting map S ! R such that R ⊥ f, g, h.
Recall the adjunction

E(−) : Perfk ⇆ CAlgE : (−)♭ = (π0(−)/m)♭

We want to prove that the constructed R is in the image of E(−). Due to the fact that E(−) is a
fully faithful left adjoint, it is equivalent to the counit E(R♭) ! R being an isomorphism.
π∗(E(R♭)) and π∗(R) are 2-periodic, so to prove that π∗(E(R♭)) ! π∗(R) is an isomorphism it is
enough to check for ∗ = 0, 1. However, π1(E(R♭)) = 0, so we reduce to the following goals

(1) π1(R) = 0,

(2) π0(E(R♭)) ! π0(R) is injective, and

1



(3) π0(E(R♭)) ! π0(R) is surjective.

We will replace condition (2) by a stronger statement, that R♭ is of Krull dimension 0.

Lemma 2.1. Suppose R♭ is of Krull dimension 0, then π0(E(R♭)) ! π0(R) is injective.

Proof. We will first prove that the reduction modulu m

R♭ ! π0(R)/m

is injective. Denote B = π0(R)/m, by definition R♭ = B♭, so we need to show that B♭ ! B
is injective. Let x ∈ ker(B♭ ! B), because B is of Krull dimension 0, (x) is generated by an
idempotent e ∈ B♭. e is a system of pn-th roots of 0 which are also idempotents. The only
nilpotent idempotent is 0, so e = 0 so x = 0
Now consider the following commutative diagram

π0E(R♭) π0R

WT(R♭) WT(π0R/m)

∼

The left map is an isomorphism from cofreeness, and the bottom map is injective because WT
preserves injectivity, so the top map is injective.

Now we can finish the proof.

Proposition 2.2. The counit E(R♭) ! R is an isomorphism, and moreover R♭ is of Krull dimen-
sion 0.

Proof. Recall our goals,

(1) π1(R) = 0,

(2) R♭ is of Krull dimension 0, and

(3) π0(E(R♭)) ! π0(R) is surjective.

Where condition (2) also implies injectivity. Those three conditions follow from orthogonality to h,
f and g respectively.
(1): the map h is defined as

h : E{z1} z1 7!0−−−! E

where z1 is in degree 1. The fact that h ⊥ R implies that every map E{z1} ! R selecting an
element of π1(R) can be factored through 0, i.e. π0(R) = 0.
(2): The map f is defined as

f : E(k[x
1

p∞ ]) x 7!(x,0)−−−−−! E(k[x± 1
p∞ ]) × E
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And f ⊥ R implies that R♭ is of krull dimension 0. The idea is that every a ∈ R♭ corresponds to a
map k[x

1
p∞ ] ! R♭, which by orthogonality to f and the E(−) ⊣ (−)♭ adjunction can be lifted to a

map k[x± 1
p∞ ] × k ! R♭. Let b ∈ R♭ be that image of x−1 under this map, it follows that ab2 = a,

a condition equivalent to Krull dimension 0.
(3): The map

g : E{z0} ! E(k{z0}♯)

was defined by Lior. A map E(k{z0}♯) ! R corresponds by cofreeness to a map E{z0} ! E(R♭),
so g ⊥ R implies the π0(E(R♭)) ! π0(R) is surjective. (The target is a free module so it is
conservative, thus nilpotence detecting)

The map S ! R ≃ E(R♭) we constructed is nilpotence detecting. In particular, if S ̸= 0, then
R♭ ̸= 0, and there is some ring map R♭ ! F to an algebraically closed field F .

Theorem 2.3. Suppose L is an algebraically closed field, then E(L) is nullstelenzatsian.

Proof. Let S be a compact non-zero E(L)-algebra, we need to construct a map S ! E(L). By the
above discussion, there exists some map S ! E(F ) where F is an algebraically closed field. The
composition E(L) ! S ! E(F ), and the fact that E(−) is fully faithful, exhibit F as an L-algebra,
and we can assume L ⊆ F .
Now consider the poset of finite subsets of F ,

P = {X ⊆ F | |X| < ω}

and the functor P ! PerfL sending X 7! L[X]♯ ⊆ F , where L[X] is the sub-ring of F generated
by L and X. We have that colimX∈P L[X]♯ = F , and thus also colimX∈P E(L[X]♯) = E(F ) by
virtue of E(−) being a left adjoint. However, P is a filtered poset, and S is compact, so the map
B ! E(F ) factors through some B ! E(L[X]♯).
We wish to construct a map L[X]♯ ! L, and since L is perfect it is enough to construct a map
L[X] ! L. This follows from the classical nullstelenzats, as L[X] is a compact L-algebra.

3 Nullstelenzatsian is E(L)
Classically, the defining property of an algebraically closed field L is that any polynomial P ∈ L[x]
that has a root in some extension of L already has a root in L. This can be expressed as an
equivalence of extension problems

L[x] L[x] L[x] L[x]

T L

P

0

P

0

This generalizes for nullstelenzatsian objects in an arbitrary category, but we will work only with
SpT n. For the rest of this section, fix R ∈ CAlg(SpT (n)) nullstelenzatsian.
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Lemma 3.1. For any 0 ̸= T ∈ CAlgR, W1, W2 ∈ Modω
R, and a map P : R{W1} ! R{W2}, the

following extension problems are equivalent:

R{W1} R{W2} R{W1} R{W2}

T R

P

0

P

0

Proof. It suffices to prove the left to right implication. Consider the free-forgetful adjunction

R{−} : ModR ⇆ CAlgR : U.

Since U preserves filtered colimits, the left adjoint R{−} preserves compact objects. In particular,
R{W1} and R{W2} are compact in CAlgR. By assumption, we have a commuting square

R{W1} R{W2}

R T

P

0

and thus a map from the pushout to T

Q := R ⊗R{W1} R{W2} ! T

where Q is compact in CAlgR as a pushout of compacts. Moreover, since T ̸= 0, the existence of
Q ! T implies Q ̸= 0. Thus, since R is nullstelenzatsian, there exists a map Q ! R which gives
the desired extension.

Corollary 3.2. For any 0 ̸= T ∈ CAlgR and W ∈ Modω
R, the induced map on mapping spectra

MapSpT (n)
(W, R) ! MapSpT (n)

(W, T )

is injective on π∗.

Proof. Suppose
x ∈ ker(πk MapSpT (n)

(W, R) ! πk MapSpT (n)
(W, T )).

As an element of πk MapSpT (n)
(W, R), x induces a map of R-algebras x : R{ΣkW} ! R, and the

composition R{ΣkW} ! R ! T is homotopic to 0

R{ΣkW1} R

T.

x

0

By Lemma 3.1 applied to W1 = ΣkW and W2 = 0, the map x : R{ΣkW} ! R is already homotopic
to 0, so x = 0 in πk MapSpT (n)

(W, R).
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Now let R ∈ CAlg(SpT (n)) be nullstelenzatsian. As we saw earlier, there is some algebra map
R ! E(F ) where F is an algebraically closed field. Let Vn be a type n Smith-Toda complex, since
LT (n)Vn is compact in SpT (n), the above corollary implies that

Vn ⊗ R ! Vn ⊗ E(F )

is injective on π∗. Since E(F ) is even, it follows that Vn ⊗ R is even. This implies that R is even,
and in particular complex orientable.
Since R is even and complex orientable, we have elements p, v0, . . . , vn−1 ∈ π∗Vn, and the R-module

K := R/(p, v0, . . . , vn−1) = R/m

acquires the structure of an E1-R-algebra (Hahn-Wilson). Our goal is to show that R ≃ E(π0K).
This will follow from the following proposition:

Proposition 3.3. π∗K is even periodic and π0K is an algebraically closed field.

Proof. As an R-module, K is compact as a finite colimit of R, and in particular dualizable. Using
its dual R-module K∨, which is also compact, and the map R ! E(F ) in Corollary 3.2, we get
that

MapSpT (n)
(K∨, R) ! MapSpT (n)

(K∨, E(F ))

is injective on π∗, or equivalently

K ! K ⊗R E(F ) = E(F )/m

is injective on π∗. Since π∗(E(F )/M) = F [u±1] is even and commutative, it follows that π∗(K) is
even and commutative.
To continue, we will need the following claim: For every f ∈ π∗K[t1, . . . , tl] non-constant homoge-
neous where |ti| = 2di, there exist x1, . . . , xl ∈ π∗K of degree |xi| = 2di such that f(x1, . . . , xl) = 0
(π∗K is nullstelenzatsian as a graded commutative ring).
First, we will show that π∗(E(F )/m) = F [u±1] satisfies this claim. Indeed, given f ∈ F [u±1][t1, . . . , tl]
as above, we can reduce to f ∈ F [t1, . . . , tl] and |ti| = 0 by multiplying with u, which follows from
the classical nullstelenzats.
Now let f ∈ π∗K[t1, . . . , tl] as above, and let f̃ ∈ π∗K⟨t1, . . . , tl⟩ be a lift to non-commutative
polynomials. Such a polynomial defines a map ⊕l

i=1Σ−2diK ! Σ−2dK, which has a transpose
Pf : Σ2dK∨ ! ⊕l

i=1Σ2diK∨. The fact that f has a solution in π∗(E(F )/m) = π∗(E(F ) ⊗R K)
corresponds to an extension

R{Σ2dK∨} R{⊕l
i=1Σ2diK∨}

E(F ).

Pf

0

so by Lemma 3.1 there also exist an extension to R, which corresponds to a solution in π∗K.
Finally, we will use the above claim with the following polynomials:
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(1) f(t1, t2) = t1t2 − 1 where |t1| = 2, |t2| = −2 implies the existence of an invertible element of
degree 2.

(2) f(t) = at − 2 where |t| = 0, 0 ̸= a ∈ π0K implies that π0K is a field

(3) Any non-constant f(t) ∈ π0K[t] where |t| = 0 implies that π0K is algebraically closed.

Corollary 3.4. The above proposition implies that R ≃ E(π0K) (Lurie).

4 The constructible spectrum

Given a commutative ring A, a geometric point of Spec(A) is a map Spec(L) ! Spec(A) for L
algebraically closed, where two point are identified if they factor through a common field extension.
Moreover, The set of geometric points can be given a topology, called the constructible topology,
where the closed sets are images of Spec(B) ! Spec(A).
Now that we have a notion of algebraically closed in the chromatic world, we can define a similar
spectrum.

Definition 4.1. For R ∈ CAlg(SpT n), define Speccons
T (n)(R) to be the set of maps q : R ! E(L) for

L algebraically closed modulo the relation identifying q1 : R ! E(L1) and q2 : R ! E(L2) if there
exists some algebraically closed field L3 and a square

R E(L1)

E(L2) E(L3),

q1

q2

with the topology where the closed sets are the sets of point that factor through some R ! S.

Some if the properties we discussed have a geometric interpretation in the constructible spectrum.
for example, the fact that every R ̸= 0 has some map R ! E(L) implies that R = 0 ⇐⇒
Speccons

T (n)(R) ̸=. For another example, we have:

Proposition 4.2. A map R ! S detects nilpotence if and only if Speccons
T (n)(S) ! Speccons

T (n)(R) is
surjective.

Proof. Suppose that R ! S is nilpotence detecting, in particular it is nil-conservative, meaning
that for every 0 ̸= A ∈ CAlgR A ⊗R S ̸= 0. For every geometric point R ! E(L), the fiber of this
point in Speccons

T (n)(S) is given by the geometric points of E(L) ⊗R S. Since E(L) ⊗R S ̸= 0, the fiber
is non-empty.
For the other direction, first note that for any R ∈ CAlg(SpT n) there exists a nilpotence detecting
map R ! E(A) where A is a product of algebraically closed fields. Indeed, we have R ! E(A′)
where A′ is perfect of Krull dimension 0, and we let A be the product of the algebraic closure of
the residue fields of A′.
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Now suppose that Speccons
T (n)(S) ! Speccons

T (n)(R) is surjective, and choose nilpotence detecting maps
R ! E(A) and E(A) ⊗R S ! E(B) such that A and B are products of algebraically closed fields.
Consider the diagram

R S

E(A) E(A) ⊗R S E(B)t

Since Speccons
T (n)(S) ! Speccons

T (n)(R) is surjective it follows that Speccons
T (n)(E(A)⊗RS) ! Speccons

T (n)(E(A))
is surjective, indeed, the fiber of E(A) ! E(L) is given by E(L) ⊗R S

R S

E(A) E(A) ⊗R S E(B)

E(L) E(L) ⊗R S

which is non-empty. Moreover, the map E(A) ⊗R S ! E(B) is nilpotence detecting so by the
former direction Speccons

T (n)(E(B)) ! Speccons
T (n)(E(A) ⊗R S) is surjective. Altogether, the map

Speccons
T (n)(E(B)) ! Speccons

T (n)(E(A)) is surjective. However, this map is identified to SpecZar(B) !
SpecZar(A), and it follows that E(A) ! E(B) is nilpotence detecting. In particular R ! E(B) is
nilpotence detecting, and together with S ! E(B) being nilpotence detecting we finish.
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