Orientations seminar - Hirzebuch signature theorem

Leor Neuhauser

1 Signature

Let M be a closed oriented manifold of dimension 4k. Consider the bilinear form:

$$I_M \colon H^{2k}(M) \times H^{2k}(M) \to \mathbb{Z}$$
$$c_1, c_2 \mapsto \langle c_1 \cup c_2, [M] \rangle$$

This bilinear form is called the *intersection form*, because under Poincare duality it corresponds to the bilinear form $H_{2k}(M) \times H_{2k}(M) \to \mathbb{Z}$ which, for classes $[C], [D] \in H_{2k}(M)$ represented by submanifolds of dimension 2k, acts by wiggling them until they are transverse, and counting their (signed) intersection points. I_M vanishes on the torsion subgroup of $H^{2k}(M)$, so it restricts to a bilinear form on the free quotient

$$\overline{I}_M$$
: Free $H^{2k}(M) \times \text{Free}H^{2k}(M) \to \mathbb{Z}$

and Poincare duality tells us that \overline{I}_M is non-degenerate. This implies that I_M would be non-degenerate after tensoring with \mathbb{Q} , or even \mathbb{R} .

Definition 1.1. Given a real bilinear form $B : V \times V \to \mathbb{R}$, there exists maximal subspaces $V_+, V_- \subseteq V$ on which B is positive/negative definite. The signature of B is defined as $\operatorname{Sign}(M) = \dim(V_+) - \dim(V_-) \in \mathbb{Z}$. Alternatively, given a diagonal representation of V, the signature is the number of positive entries minus the number of negative entries.

Definition 1.2. For M closed oriented, the signature of M is $\operatorname{Sign}(M) = \operatorname{Sign}(I_M \otimes R) \in \mathbb{Z}$.

Example 1.3. Consider $S^2 \times S^2$, $H^2(S^2 \times S^2; \mathbb{R}) \simeq \mathbb{R}^2$. In the standard basis, the intersection form is represented by a matrix

$$H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

where H stands for hyperbolic. By diagonalizing H, we see that the signature is 0.

Example 1.4. For \mathbb{CP}^{2k} , the middle homology is $H_{2k}(\mathbb{CP}^{2k}) \simeq \mathbb{Z}$ with generator $[\mathbb{CP}^k]$. The submanifold $\mathbb{CP}^k \subseteq \mathbb{CP}^{2k}$ is a locus of a degree 1 homogeneous polynomial so by Bezout's theorem the intersection number is $I_{\mathbb{CP}^{2k}}(\mathbb{CP}^k,\mathbb{CP}^k) = 1$. Thus, $\operatorname{Sign}(\mathbb{CP}^{2k}) = 1$.

Our first goal is the following theorem:

Theorem 1.5. The signature is a genus, i.e. a ring homomorphism Sign: $\Omega^{SO} \to \mathbb{Z}$.

We need to show that Sign is bordism invariant and a ring homomorphism. We will start with the latter.

Lemma 1.6. Let $M_1^{4k_1}, M_2^{4k_2}$ be oriented manifolds, then:

- (1) $\operatorname{Sign}(M_1 \sqcup M_2) = \operatorname{Sign}(M_1) + \operatorname{Sign}(M_2)$ if $k_1 = k_2 = k$.
- (2) $\operatorname{Sign}(M_1 \times M_2) = \operatorname{Sign}(M_1)\operatorname{Sign}(M_2)$

Proof. For additivity, we have $H^{2k}(M_1 \sqcup M_2) = H^{2k}(M_1) \oplus H_{2k}(M_2)$, so the diagonal representation of $I_{M_1 \cup M_2}$ will just be the diagonal representation of I_{M_1} followed by I_{M_2} .

For multiplicativity, the Kunneth theorem tells us

$$H^{2k_1+2k_2}(M_1 \times M_2; \mathbb{R}) = \bigoplus_j H^{2k_1+j}(M_1; \mathbb{R}) \otimes H^{2k_2-j}(M_2; \mathbb{R}) = H^{2k_1}(M_1; \mathbb{R}) \otimes H^{2k_2}(M_2; \mathbb{R}) \oplus T$$

We want to prove that the intersection form vanishes on T. Note moreover that $[M_1 \times M_2] = [M_1] \otimes [M_2] \in H_{4k_1}(M_1) \otimes H_{4k_2}(M_2)$.

To prove cobordism invariance, we will use the following lemmas:

Lemma 1.7. Let $i: M^n \hookrightarrow N^{n+1}$ be the boundary inclusion of oriented manifolds, and let $c \in H^n(N)$. Then $\langle i^*(c), [M] \rangle = 0$

Proof. $\langle i^*(c), [M] \rangle = \langle c, i_*[M] \rangle$ and $i_*[M] = 0$, as it is a boundary in N.

Lemma 1.8. Let $B: V \times V \to \mathbb{R}$ be a non-degenerate symmetric bilinear form. Suppose $W \subseteq V$ is isotropic, meaning that $B(w_1, w_2) = 0$ for all $w_1, w_2 \in W$, and $\dim(V) = 2\dim(W)$. The $\operatorname{Sign}(B) = 0$.

Proof. Let $0 \neq w_1 \in W_1$. Since B is non-degenerate there exists $v_1 \in V$ such that $B(w_1, v_1) = 1$. Adding a multiple of w_1 to v_1 , we can assume $B(v_1, v_1) = 0$ Let $V = \text{Span}(v_1, w_1) \oplus V_1$ be an orthogonal decomposition. $B|_{\text{Span}(v_1, w_1)} = H$ is the hyperbolic form with signature 0, and V_1 satisfies the same hypothesis as V. Proceed by induction.

Proof of theorem. We want to show that if $M^{4k} \hookrightarrow N^{4k+1}$ is a boundary inclusion, then Sign(M) = 0. Consider the map between long exact sequences induces for Poincare duality:

$$\begin{array}{cccc} H^{2k}(N;\mathbb{R}) & & \stackrel{i^*}{\longrightarrow} & H^{2k}(M;\mathbb{R}) & \longrightarrow & H^{2k+1}(N,M;\mathbb{R}) \\ & & \downarrow \sim & & \downarrow \sim & \\ & & \downarrow \sim & & \downarrow \sim & \\ H_{2k+1}(N,M;\mathbb{R}) & & \longrightarrow & H_{2k}(M;\mathbb{R}) & \stackrel{i_*}{\longrightarrow} & H_{2k}(N;\mathbb{R}) \end{array}$$

We claim the $\operatorname{Im}(i^*)$ is isotropic for $I_M \otimes \mathbb{R}$ and has dimension $\frac{1}{2} \dim H^{2k}(M;\mathbb{R})$. Isotropy follows from Lemma 1.7. $\operatorname{Im}(i^*)$ maps isomorphically to $\ker(i_*)$, but $\ker(i_*)$ is the orthogonal of $\operatorname{Im}(i^*)$ under the pairing of homology and cohomology, so we deduce $\dim \operatorname{Im}(i^*) = \frac{1}{2} \dim H^{2k}$. \Box

Now that we know that the signature is a genus, we want to be able to it using Pontrjagin numbers. Let's first recall their definition.

2 Pontrjagin classes

Consider $c_1(L) = -y \in H^2(\mathbb{CP}^{\infty})$ the universal Chern class of the tautological line bundle L. Taking complex conjugate is orientation flipping, so $c_1(\overline{L}) = y$.

Lemma 2.1. For every complex vector bundle $E \to M$, $c_i(\overline{E}) = (-1)^i c_i(E)$.

Proof. By the splitting principle, we can think of $c_i(E)$ as the *i*-th elementary symmetric polynomial in x_1, \ldots, x_k where k is the rank of E. Each x_j is pulled from $-y \in H^2(\mathbb{CP}^\infty)$, so in $c_i(\overline{E})$ it is replaced with $-x_i$.

Suppose $V \to M$ is a real vector, then $V \otimes_{\mathbb{R}} \mathbb{C} \to M$ is a complex vector bundle. We have an isomorphism $V \otimes_{\mathbb{R}} \mathbb{C} \simeq \overline{V \otimes_{\mathbb{R}} \mathbb{C}}$, so $c_i(V \otimes_{\mathbb{R}}) = (-1)^i c_i(V \otimes_{\mathbb{R}})$. This implies that the odd Chern classes are 2-torsion.

Definition 2.2. The Pontrjagin classes of V are the even Chern classes of $V \otimes_{\mathbb{R}} \mathbb{C}$, up to a sign convention

$$p_i(V) = (-1)^i c_{2i}(V \otimes_{\mathbb{R}} \mathbb{C}) \in H^{4i}(M)$$

The total Pontrjagin class is then $p(V) = 1 + p_1(V) + p_2(V) + \dots$

For $E \to M$ a complex vector bundle, we have $E \otimes_{\mathbb{R}} \mathbb{C} \simeq E \oplus \overline{E}$. Writing $c(E) = \prod_{j=1}^{k} (1+x_j)$, we have $c(\overline{E}) = \prod_{j=1}^{k} (1-x_j)$, and so

$$c(E \oplus \overline{E}) = \prod_{j=1}^{k} (1+x_j)(1-x_j) = \prod_{j=1}^{k} (1-x_j^2).$$

It follows that $p_i(E)$ is the *i*-th elementary symmetric polynomial in x_j^2 . Conversely, every symmetric polynomial in x_i^2 formally corresponds to a polynomial in Pontrjagin classes.

Given an oriented *n*-manifold M and a tuple $i_1, \ldots i_r \ge 1$ such that $4(i_1 + \cdots + i_r) = n$, the associated Pontrjagin number is

$$p_{i_1,\ldots,i_r}(M) = \langle p_{i_1}(TM) \cup \cdots \cup p_{i_r}(TM), [M] \rangle$$

Proposition 2.3. The Pontrjagin numbers is oriented-cobordism invariant,

$$p_{i_1,\ldots,i_r} \colon \Omega_n^{SO} \to \mathbb{Z}$$

Proof. Let $i: M^n \hookrightarrow N^{n+1}$ be a boundary inclusion, we want to show that the Pontrjagin numbers vanish on M. Note that $i^*TN = TM \oplus \mathbb{R}$, so from stability $p_i(TM) = i^*p_i(TN)$. The result then follows from the above lemma.

3 The *L*-polynomial

A symmetric polynomial in x_1^2, \ldots, x_k^2 corresponds to a unique polynomial in Pontrjagin classes. We can define such polynomials using Taylor series, which will be truncated at the rank. Consider the series

$$\frac{x}{\tanh(x)} = 1 + \frac{x^2}{3} + \dots$$

and define the *L*-polynomial as $L = \prod_{j=1}^{k} \frac{x_j}{\tanh(x_j)}$. Because *L* is symmetric, and $\frac{x}{\tanh(x)}$ has only even powers of *x*, we can write *L* as a polynomial in Pontrjagin classes.

Definition 3.1. Given an oriented *n*-manifold M, the *L*-genus of M is given by $\langle L(TM), [M] \rangle \in \mathbb{Z}$. Note that when we write this expression, we only multiply the degree n part.

Proposition 3.2. The L genus is indeed a ring homomorphism $\Omega^{SO} \to \mathbb{Z}$.

Proof. Cobordism invariance follows from cobordism invariance of Pontrjagin numbers. Additivity is immediate, as we compute component wise. For multiplicativity, suppose TM, TM' have formal Chern roots $x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+n'}$ respectively, then

$$L(TM \oplus TM') = \prod_{j=1}^{n+n'} \frac{x_j}{\tanh(x_j)} = L(TM)L(TM').$$

This might formally work only when M, M' have a complex structure and TM, TM' are stably split over \mathbb{C} , but in fact this is the only case where we will need it.

We will calculate the L-genus for \mathbb{CP}^n . Consider the exact sequence of vector bundles over \mathbb{CP}^n :

$$0 \to S \to \underline{\mathbb{C}^{n+1}} \to Q \to 0$$

where S is the tautological line bundle and Q is the quotient. The tangent bundle of \mathbb{CP}^n is given by $T\mathbb{CP}^n = \hom(S, Q) = S^* \otimes Q$.

Lemma 3.3. $T\mathbb{CP}^n$ is stably equivalent to $(S^*)^{n+1}$

Proof. By the exact sequence $\underline{\mathbb{C}^{n+1}} = S \oplus Q$, so

$$(S^*)^n = S^* \otimes \underline{\mathbb{C}^{n+1}} = S^* \otimes S \oplus S^* \oplus Q \simeq \mathbb{C} \oplus T \mathbb{C} \mathbb{P}^n$$

_	-
_	-

Proposition 3.4. The L-genus of \mathbb{CP}^n is $\langle L(T\mathbb{CP}^n), [\mathbb{CP}^n] \rangle = \begin{cases} 1 & 2|n \\ 0 & 2 \not |n \end{cases}$.

Proof. By stability of Chern classes, we can replace $T\mathbb{CP}^n$ by $(S^*)^{n+1}$. Note that $(S^*)^{n+1}$ is already a sum of line bundles, so we don't need to split it, and in $(S^*)^{n+1}$ we have $x_j = y \in H^2(\mathbb{CP}^n)$ (it is y and not -y because we are using the dual tautological bundle S^*), so

$$L((S^*)^{n+1}) = (\frac{y}{\tanh(y)})^{n+1}$$

We have $\langle y^n, [\mathbb{CP}^n] \rangle = 1$, so the *L*-genus is the coefficient of y^n above, which is equal by the Cauchy integral formula to

$$\frac{1}{2\pi i} \int \frac{dy}{y^{n+1}} \left(\frac{y}{\tanh(y)}\right)^{n+1} = \frac{1}{2\pi i} \int \frac{dy}{\tanh(y)^{n+1}} = \frac{1}{2\pi i} \int \frac{dz}{(1-z^2)z^{n+1}} = \frac{1}{2\pi i} \int \frac{1+z^2+z^4+\dots}{z^{n+1}} dz = \begin{cases} 1 & 2|n\\ 0 & 2 \not|n \end{cases}$$

4 Hirzebuch signature theorem

Theorem 4.1 (Hirzebuch signature theorem). The signature is equal to the *L*-genus

$$\operatorname{Sign}(M) = \langle L(TM), [M] \rangle.$$

Note that both the signature and the *L*-genus are ring homomorphisms $\Omega^{SO} \to \mathbb{Z}$. To check that they are equal it is enough verify after tensoring with \mathbb{Q} .

We will use the following result:

Theorem 4.2. $\Omega^{SO} \otimes \mathbb{Q} \simeq \mathbb{Q}[y_1, y_2, \dots]$ is a freely generated ring, where the generator y_i of degree 4i corresponds to the cobordism class of \mathbb{CP}^{2i} .

The Hirzebuch signature theorem then follows, as both the sign and the *L*-genus of \mathbb{CP}^{2i} is 1. For a 4-manifold, the Hirzebuch signature theorem implies that

$$\operatorname{Sign}(M) = \langle p_1(TM)/3, [M] \rangle$$

In particular, since the left-hand side is an integer, it implies that the first Pontrjagin number of M is divisible by 3. This is not at obvious, as $p_1(TM)/3$ is generally not an integer cohomology class.