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1 Signature

Let M be a closed oriented manifold of dimension 4k. Consider the bilinear form:

Ing: H*®(M) x H*(M) — Z
c1,¢2 — (c1 Uca, [M])

This bilinear form is called the intersection form, because under Poincare duality it corresponds
to the bilinear form Hop (M) x Hop (M) — Z which, for classes [C], [D] € Hoi(M) represented by
submanifolds of dimension 2k, acts by wiggling them until they are transverse, and counting their
(signed) intersection points. Ip; vanishes on the torsion subgroup of H 2k (M), so it restricts to a
bilinear form on the free quotient

Ty : FreeH?* (M) x FreeH** (M) — Z

and Poincare duality tells us that I; is non-degenerate. This implies that Ip; would be non-
degenerate after tensoring with Q, or even R.

Definition 1.1. Given a real bilinear form B : V x V — R, there exists maximal subspaces
Vi, V_ C V on which B is positive/negative definite. The signature of B is defined as Sign(M) =
dim(Vy) — dim(V_) € Z. Alternatively, given a diagonal representation of V', the signature is the
number of positive entries minus the number of negative entries.

Definition 1.2. For M closed oriented, the signature of M is Sign(M) = Sign(Iy ® R) € Z.

Example 1.3. Consider S? x S?, H?(S? x S%;R) ~ R2. In the standard basis, the intersection
form is represented by a matrix
0 1
#=(10)

where H stands for hyperbolic. By diagonalizing H, we see that the signature is 0.

Example 1.4. For CP?*| the middle homology is Hay(CP?*) =~ Z with generator [CP*]. The
submanifold CP* C CP?* is a locus of a degree 1 homogeneous polynomial so by Bezout’s theorem
the intersection number is Igpzx (CP*, CP*) = 1. Thus, Sign(CP*) = 1.

Our first goal is the following theorem:



Theorem 1.5. The signature is a genus, i.e. a ring homomorphism Sign: Q¢ — Z.

We need to show that Sign is bordism invariant and a ring homomorphism. We will start with the
latter.

Lemma 1.6. Let M} My*? be oriented manifolds, then:
(1) Sign(M1 L Mg) = SigH(Ml) + SigD(Mg) ’Lf ]{11 = kg =k.
(2) Sign(My x M>) = Sign(M1)Sign(Ma)

Proof. For additivity, we have H2*(M;LIMy) = H?*(M,;)® Hay(M>), so the diagonal representation
of In,unr, will just be the diagonal representation of I, followed by Iy, .

For multiplicativity, the Kunneth theorem tells us

H2k1+2k2(M1 % MQ;R) _ ®H2k1+j(M1;R) ® H2k2_j(M2;R) _ H2k1 (Ml;R) ®H2k2(M2;R) T
J

We want to prove that the intersection form vanishes on T. Note moreover that [M; x Ms] =
[Ml] ® [Mg] S H4k1 (Ml) & H4k2 (Mg) O

To prove cobordism invariance, we will use the following lemmas:

Lemma 1.7. Let i: M"™ — N"*1 be the boundary inclusion of oriented manifolds, and let ¢ €
H™(N). Then (i*(c),[M]) =0

Proof. (i*(c),[M]) = {(c,i.[M]) and i,[M] = 0, as it is a boundary in N. O

Lemma 1.8. Let B: V x V — R be a non-degenerate symmetric bilinear form. Suppose W C V
is isotropic, meaning that B(wi,w2) = 0 for all wi,ws € W, and dim(V) = 2dim(W). The
Sign(B) = 0.

Proof. Let 0 # wy € Wy. Since B is non-degenerate there exists v; € V such that B(wy,v1) = 1.
Adding a multiple of w; to v, we can assume B(vi,v1) = 0 Let V = Span(vy,w;) & Vi be an
orthogonal decomposition. Bl|gpan(v,,w,;) = H is the hyperbolic form with signature 0, and V}
satisfies the same hypothesis as V. Proceed by induction. O

Proof of theorem. We want to show that if M** < N#*+1 is a boundary inclusion, then Sign(M) =
0. Consider the map between long exact sequences induces for Poincare duality:

-

H?*(N;R) —“— H?(M;R) —— H>*¥1(N, M;R)

[~ I~ I~

Hopy1 (N, M;R) —— Hop(M;R) —=— Hop(N;R)

We claim the Im(i*) is isotropic for Iy ® R and has dimension 3 dim H?*(M;R). Isotropy follows
from Lemma 1.7. Im(¢*) maps isomorphically to ker(i,), but ker(i,) is the orthogonal of Im(i*)

under the pairing of homology and cohomology, so we deduce dim Im(i*) = % dim H?*. O

Now that we know that the signature is a genus, we want to be able to it using Pontrjagin numbers.
Let’s first recall their definition.



2 Pontrjagin classes

Consider ¢;(L) = —y € H?(CP*) the universal Chern class of the tautological line bundle L.

Taking complex conjugate is orientation flipping, so ¢1(L) = y.

Lemma 2.1. For every complex vector bundle E — M, ¢;(E) = (—=1)'¢;(E).

Proof. By the splitting principle, we can think of ¢;(E) as the i-th elementary symmetric polynomial
in z1,...,x), where k is the rank of E. Each z; is pulled from —y € H?(CP>), so in ¢;(E) it is
replaced with —x;. O

Suppose V' — M is a real vector, then V ®gr C — M is a complex vector bundle. We have an
isomorphism V ®g C ~ V @g C, so ¢;(V®r) = (—1)’c;(V®g). This implies that the odd Chern

classes are 2-torsion.

Definition 2.2. The Pontrjagin classes of V' are the even Chern classes of V ®r C, up to a sign

convention _ |
pi(V) = (=1)%coi(V @r C) € H* (M)

The total Pontrjagin class is then p(V) =1+ p1 (V) + p2(V) + .. ..

For E — M a complex vector bundle, we have F ® C ~ E & E. Writing ¢(F) = H§:1(1 +x;), we
have ¢(E) = [T'_,(1 — z;), and so

j=1
k k
(EDE) =[] +z)1 -z =] -2}
j=1 j=1
It follows that p;(F) is the i-th elementary symmetric polynomial in xf Conversely, every symmetric
polynomial in :1:? formally corresponds to a polynomial in Pontrjagin classes.

Given an oriented n-manifold M and a tuple 41,...4, > 1 such that 4(i; + --- + i) = n, the
associated Pontrjagin number is

Piy,...iy (M) = (pi, (TM) U - - Up; (TM), [M])

Proposition 2.3. The Pontrjagin numbers is oriented-cobordism invariant,

Proof. Let i : M™ — N™*! be a boundary inclusion, we want to show that the Pontrjagin numbers
vanish on M. Note that i*TN = TM @ R, so from stability p;(TM) = i*p;(T'N). The result then
follows from the above lemma. O

3 The L-polynomial

A symmetric polynomial in z%,...,z7 corresponds to a unique polynomial in Pontrjagin classes.
We can define such polynomials using Taylor series, which will be truncated at the rank. Consider

the series
T . 22 n
tanh(z) 3




k x;

and define the L-polynomial as L = Hj:1 anh(z;)
J
even powers of x, we can write L as a polynomial in Pontrjagin classes.

Definition 3.1. Given an oriented n-manifold M, the L-genus of M is given by (L(T'M), [M]) € Z.
Note that when we write this expression, we only multiply the degree n part.

. Because L is symmetric, and has only

x
tanh(z)

Proposition 3.2. The L genus is indeed a ring homomorphism Q5° — 7.

Proof. Cobordism invariance follows from cobordism invariance of Pontrjagin numbers. Additivity
is immediate, as we compute component wise. For multiplicativity, suppose T'M, T M’ have formal

Chern roots z1,...,%n, Tpi1,--.,Tnirn respectively, then
n+n’
LOMeTM) = [[ —2— = LTM)L(TM').
e tanh(z;)

This might formally work only when M, M’ have a complex structure and TM,TM’ are stably
split over C, but in fact this is the only case where we will need it. O

We will calculate the L-genus for CP". Consider the exact sequence of vector bundles over CP":
0—-S—-C'"' >Q—0

where S is the tautological line bundle and @ is the quotient. The tangent bundle of CP" is given
by TCP" = hom(S5,Q) = S* ® Q.

Lemma 3.3. TCP" is stably equivalent to (S*)"+!

Proof. By the exact sequence C"t! = S & Q, so
(S =8"eC*'=5"95e5 ®Q~CaTCP"

1 2
Proposition 3.4. The L-genus of CP" is (L(T'CP"), [CP"]) = {0 2} .
n

Proof. By stability of Chern classes, we can replace TCP" by (S*)"*1. Note that (S*)"*! is already
a sum of line bundles, so we don’t need to split it, and in (S*)"*! we have z; = y € H*(CP") (it
is y and not —y because we are using the dual tautological bundle S*), so
L((S* n+ly _ Y n+1
()" (rnh(y))

We have (y", [CP"]) = 1, so the L-genus is the coefficient of y™ above, which is equal by the Cauchy
integral formula to

S AV TV N Y
2wt ) y™*+! tanh(y) 27t J tanh(y)nt!

1 / dz 1 /1—|—z2+z4—|—...d 1 2n
—_— _—_— = — zZ =
2wt ) (1 —22)zntl 2mi zntl 0 2




4 Hirzebuch signature theorem

Theorem 4.1 (Hirzebuch signature theorem). The signature is equal to the L-genus
Sign(M) = (L(T'M), [M]).

Note that both the signature and the L-genus are ring homomorphisms Q%Y — Z. To check that
they are equal it is enough verify after tensoring with Q.

We will use the following result:

Theorem 4.2. Q°°®Q ~ Q[y1,y2, . ..] is a freely generated ring, where the generator y; of degree
4i corresponds to the cobordism class of CP?.

The Hirzebuch signature theorem then follows, as both the sign and the L-genus of CP* is 1.

For a 4-manifold, the Hirzebuch signature theorem implies that
Sign(M) = (p1(T'M)/3, [M])

In particular, since the left-hand side is an integer, it implies that the first Pontrjagin number of M
is divisible by 3. This is not at obvious, as p; (T M)/3 is generally not an integer cohomology class.
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