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1 Signature

Let M be a closed oriented manifold of dimension 4k. Consider the bilinear form:

IM : H2k(M) × H2k(M) ! Z
c1, c2 7! ⟨c1 ∪ c2, [M ]⟩

This bilinear form is called the intersection form, because under Poincare duality it corresponds
to the bilinear form H2k(M) × H2k(M) ! Z which, for classes [C], [D] ∈ H2k(M) represented by
submanifolds of dimension 2k, acts by wiggling them until they are transverse, and counting their
(signed) intersection points. IM vanishes on the torsion subgroup of H2k(M), so it restricts to a
bilinear form on the free quotient

IM : FreeH2k(M) × FreeH2k(M) ! Z

and Poincare duality tells us that IM is non-degenerate. This implies that IM would be non-
degenerate after tensoring with Q, or even R.

Definition 1.1. Given a real bilinear form B : V × V ! R, there exists maximal subspaces
V+, V− ⊆ V on which B is positive/negative definite. The signature of B is defined as Sign(M) =
dim(V+) − dim(V−) ∈ Z. Alternatively, given a diagonal representation of V , the signature is the
number of positive entries minus the number of negative entries.

Definition 1.2. For M closed oriented, the signature of M is Sign(M) = Sign(IM ⊗ R) ∈ Z.

Example 1.3. Consider S2 × S2, H2(S2 × S2;R) ≃ R2. In the standard basis, the intersection
form is represented by a matrix

H =
(

0 1
1 0

)
where H stands for hyperbolic. By diagonalizing H, we see that the signature is 0.

Example 1.4. For CP2k, the middle homology is H2k(CP2k) ≃ Z with generator [CPk]. The
submanifold CPk ⊆ CP2k is a locus of a degree 1 homogeneous polynomial so by Bezout’s theorem
the intersection number is ICP2k (CPk,CPk) = 1. Thus, Sign(CP2k) = 1.

Our first goal is the following theorem:

1



Theorem 1.5. The signature is a genus, i.e. a ring homomorphism Sign: ΩSO ! Z.

We need to show that Sign is bordism invariant and a ring homomorphism. We will start with the
latter.

Lemma 1.6. Let M4k1
1 , M4k2

2 be oriented manifolds, then:

(1) Sign(M1 ⊔ M2) = Sign(M1) + Sign(M2) if k1 = k2 = k.

(2) Sign(M1 × M2) = Sign(M1)Sign(M2)

Proof. For additivity, we have H2k(M1⊔M2) = H2k(M1)⊕H2k(M2), so the diagonal representation
of IM1∪M2 will just be the diagonal representation of IM1 followed by IM2 .
For multiplicativity, the Kunneth theorem tells us

H2k1+2k2(M1 × M2;R) =
⊕

j

H2k1+j(M1;R) ⊗ H2k2−j(M2;R) = H2k1(M1;R) ⊗ H2k2(M2;R) ⊕ T

We want to prove that the intersection form vanishes on T . Note moreover that [M1 × M2] =
[M1] ⊗ [M2] ∈ H4k1(M1) ⊗ H4k2(M2).

To prove cobordism invariance, we will use the following lemmas:

Lemma 1.7. Let i : Mn ↪! Nn+1 be the boundary inclusion of oriented manifolds, and let c ∈
Hn(N). Then ⟨i∗(c), [M ]⟩ = 0

Proof. ⟨i∗(c), [M ]⟩ = ⟨c, i∗[M ]⟩ and i∗[M ] = 0, as it is a boundary in N .

Lemma 1.8. Let B : V × V ! R be a non-degenerate symmetric bilinear form. Suppose W ⊆ V
is isotropic, meaning that B(w1, w2) = 0 for all w1, w2 ∈ W , and dim(V ) = 2 dim(W ). The
Sign(B) = 0.

Proof. Let 0 ̸= w1 ∈ W1. Since B is non-degenerate there exists v1 ∈ V such that B(w1, v1) = 1.
Adding a multiple of w1 to v1, we can assume B(v1, v1) = 0 Let V = Span(v1, w1) ⊕ V1 be an
orthogonal decomposition. B|Span(v1,w1) = H is the hyperbolic form with signature 0, and V1
satisfies the same hypothesis as V . Proceed by induction.

Proof of theorem. We want to show that if M4k ↪! N4k+1 is a boundary inclusion, then Sign(M) =
0. Consider the map between long exact sequences induces for Poincare duality:

H2k(N ;R) H2k(M ;R) H2k+1(N, M ;R)

H2k+1(N, M ;R) H2k(M ;R) H2k(N ;R)

i∗

∼ ∼ ∼

i∗

We claim the Im(i∗) is isotropic for IM ⊗ R and has dimension 1
2 dim H2k(M ;R). Isotropy follows

from Lemma 1.7. Im(i∗) maps isomorphically to ker(i∗), but ker(i∗) is the orthogonal of Im(i∗)
under the pairing of homology and cohomology, so we deduce dim Im(i∗) = 1

2 dim H2k.

Now that we know that the signature is a genus, we want to be able to it using Pontrjagin numbers.
Let’s first recall their definition.

2



2 Pontrjagin classes
Consider c1(L) = −y ∈ H2(CP∞) the universal Chern class of the tautological line bundle L.
Taking complex conjugate is orientation flipping, so c1(L) = y.

Lemma 2.1. For every complex vector bundle E ! M , ci(E) = (−1)ici(E).

Proof. By the splitting principle, we can think of ci(E) as the i-th elementary symmetric polynomial
in x1, . . . , xk where k is the rank of E. Each xj is pulled from −y ∈ H2(CP∞), so in ci(E) it is
replaced with −xi.

Suppose V ! M is a real vector, then V ⊗R C ! M is a complex vector bundle. We have an
isomorphism V ⊗R C ≃ V ⊗R C, so ci(V ⊗R) = (−1)ici(V ⊗R). This implies that the odd Chern
classes are 2-torsion.

Definition 2.2. The Pontrjagin classes of V are the even Chern classes of V ⊗R C, up to a sign
convention

pi(V ) = (−1)ic2i(V ⊗R C) ∈ H4i(M)
The total Pontrjagin class is then p(V ) = 1 + p1(V ) + p2(V ) + . . . .

For E ! M a complex vector bundle, we have E ⊗R C ≃ E ⊕ E. Writing c(E) =
∏k

j=1(1 + xj), we
have c(E) =

∏k
j=1(1 − xj), and so

c(E ⊕ E) =
k∏

j=1
(1 + xj)(1 − xj) =

k∏
j=1

(1 − x2
j ).

It follows that pi(E) is the i-th elementary symmetric polynomial in x2
j . Conversely, every symmetric

polynomial in x2
j formally corresponds to a polynomial in Pontrjagin classes.

Given an oriented n-manifold M and a tuple i1, . . . ir ≥ 1 such that 4(i1 + · · · + ir) = n, the
associated Pontrjagin number is

pi1,...,ir
(M) = ⟨pi1(TM) ∪ · · · ∪ pir

(TM), [M ]⟩

Proposition 2.3. The Pontrjagin numbers is oriented-cobordism invariant,

pi1,...,ir : ΩSO
n ! Z

Proof. Let i : Mn ↪! Nn+1 be a boundary inclusion, we want to show that the Pontrjagin numbers
vanish on M . Note that i∗TN = TM ⊕ R, so from stability pi(TM) = i∗pi(TN). The result then
follows from the above lemma.

3 The L-polynomial
A symmetric polynomial in x2

1, . . . , x2
k corresponds to a unique polynomial in Pontrjagin classes.

We can define such polynomials using Taylor series, which will be truncated at the rank. Consider
the series

x

tanh(x) = 1 + x2

3 + . . .
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and define the L-polynomial as L =
∏k

j=1
xj

tanh(xj) . Because L is symmetric, and x
tanh(x) has only

even powers of x, we can write L as a polynomial in Pontrjagin classes.

Definition 3.1. Given an oriented n-manifold M , the L-genus of M is given by ⟨L(TM), [M ]⟩ ∈ Z.
Note that when we write this expression, we only multiply the degree n part.

Proposition 3.2. The L genus is indeed a ring homomorphism ΩSO ! Z.

Proof. Cobordism invariance follows from cobordism invariance of Pontrjagin numbers. Additivity
is immediate, as we compute component wise. For multiplicativity, suppose TM, TM ′ have formal
Chern roots x1, . . . , xn, xn+1, . . . , xn+n′ respectively, then

L(TM ⊕ TM ′) =
n+n′∏
j=1

xj

tanh(xj) = L(TM)L(TM ′).

This might formally work only when M, M ′ have a complex structure and TM, TM ′ are stably
split over C, but in fact this is the only case where we will need it.

We will calculate the L-genus for CPn. Consider the exact sequence of vector bundles over CPn:

0 ! S ! Cn+1 ! Q ! 0

where S is the tautological line bundle and Q is the quotient. The tangent bundle of CPn is given
by TCPn = hom(S, Q) = S∗ ⊗ Q.

Lemma 3.3. TCPn is stably equivalent to (S∗)n+1

Proof. By the exact sequence Cn+1 = S ⊕ Q, so

(S∗)n = S∗ ⊗ Cn+1 = S∗ ⊗ S ⊕ S∗ ⊕ Q ≃ C ⊕ TCPn

Proposition 3.4. The L-genus of CPn is ⟨L(TCPn), [CPn]⟩ =
{

1 2|n
0 2 ̸ |n

.

Proof. By stability of Chern classes, we can replace TCPn by (S∗)n+1. Note that (S∗)n+1 is already
a sum of line bundles, so we don’t need to split it, and in (S∗)n+1 we have xj = y ∈ H2(CPn) (it
is y and not −y because we are using the dual tautological bundle S∗), so

L((S∗)n+1) = ( y

tanh(y) )n+1

We have ⟨yn, [CPn]⟩ = 1, so the L-genus is the coefficient of yn above, which is equal by the Cauchy
integral formula to

1
2πi

∫
dy

yn+1 ( y

tanh(y) )n+1 = 1
2πi

∫
dy

tanh(y)n+1 =

1
2πi

∫
dz

(1 − z2)zn+1 = 1
2πi

∫ 1 + z2 + z4 + . . .

zn+1 dz =
{

1 2|n
0 2 ̸ |n
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4 Hirzebuch signature theorem

Theorem 4.1 (Hirzebuch signature theorem). The signature is equal to the L-genus

Sign(M) = ⟨L(TM), [M ]⟩.

Note that both the signature and the L-genus are ring homomorphisms ΩSO ! Z. To check that
they are equal it is enough verify after tensoring with Q.
We will use the following result:

Theorem 4.2. ΩSO ⊗Q ≃ Q[y1, y2, . . . ] is a freely generated ring, where the generator yi of degree
4i corresponds to the cobordism class of CP2i.

The Hirzebuch signature theorem then follows, as both the sign and the L-genus of CP2i is 1.
For a 4-manifold, the Hirzebuch signature theorem implies that

Sign(M) = ⟨p1(TM)/3, [M ]⟩

In particular, since the left-hand side is an integer, it implies that the first Pontrjagin number of M
is divisible by 3. This is not at obvious, as p1(TM)/3 is generally not an integer cohomology class.
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