The Multiplicative Structure of Higher Bordism Categories

YTM 2025

Leor Neuhauser

(joint w/ Shai Keidar and Lior Yanovski)

Bordism Rings

Bordism

M, N smooth closed n-manifolds.

Bordism is n + 1-manifold with boundary $M \sqcup N$

1

Bordism ring

$$\Omega_n = n$$
-manifolds / bordism

 Ω_{\ast} is graded ring:

ullet + : disjoint union

ullet \times : multiplication of manifolds

Bordism ring

Theorem (Thom 1954)

$$\Omega_* \simeq \mathbb{F}_2[x_n \mid n \neq 2^t - 1]$$

Framing

A (stable) framing is a trivialization of the (stable) tangent bundle:

 $\Omega_n^{ ext{fr}} = ext{stably framed } n ext{-manifolds} \, ig/ \, ext{stably framed bordism}$

4

Framed bordism ring

Theorem (Pontryagin 1938)

$$\Omega_*^{fr} \simeq \pi_* \mathbb{S}$$

Higher Bordism Categories

Categorification

Bordism as relation → Bordism as structure

category:

• obj: *n*-manifolds

· mor: bordisms

Bordisms between bordisms → Higher category

Higher bordism category

Definition (Lurie, Calaque-Scheimbauer) Bord_n is an (∞, n) -category:

- · obj: 0-manifolds
- 1-mor: 1-manifolds with boundary
- · 2-mor: 2-manifolds with corners
- ... n-mor: n-manifolds with higher corners
- *n* + 1-mor: diffeomorphisms
- . . .

Example

Categorifying the ring structure

Disjoint union \rightsquigarrow Symmetric monoidal structure on Bord_n

Multiplication \rightsquigarrow ?

First attempt

$$\operatorname{Bord}_n \times \operatorname{Bord}_k \xrightarrow{?} \operatorname{Bord}_{n+k}$$

Problem!

 $1\text{-mor} \times 1\text{-mor} \mapsto 1\text{-mor}$

 $1\text{-manifold} \times 1\text{-manifold} \mapsto \textbf{2-manifold}$

Gray product

Cartesian product:

$$\Delta^1 \times \Delta^1 = \bigcup_{\bullet \longrightarrow \bullet}^{\bullet} \bigcup_{\bullet}$$

Gray product:

$$\Delta^1 \stackrel{\checkmark}{\times} \Delta^1 = \bigcup_{\bullet} \bigcup_{\bullet} \bigcup_{\bullet}$$

Multiplication of manifolds

Construction

Multiplication of manifolds defines a functor

$$\operatorname{Bord}_n \times \operatorname{Bord}_k \to \operatorname{Bord}_{n+k}$$
.

induces a symmetric monoidal functor

$$\operatorname{Bord}_n \otimes \operatorname{Bord}_k \to \operatorname{Bord}_{n+k}$$
.

Highest bordism category

$$Bord_{\infty} := \varinjlim Bord_n$$

Algebra structure:

$$Bord_{\infty} \mathbin{\vec{\otimes}} Bord_{\infty} \to Bord_{\infty}$$

Framed bordism category

Bord $_n^{fr}$: like Bord $_n$, everything suitably framed.

$$\operatorname{Bord}_n^{\operatorname{fr}} \otimes \operatorname{Bord}_k^{\operatorname{fr}} \to \operatorname{Bord}_{n+k}^{\operatorname{fr}}.$$

Universal property of bordisms

Duality

 $\mathcal C$ symmetric monoidal $(\infty,1)$ -category. $X\in\mathcal C$ is **dualizable** if there exists:

- $X^{\vee} \in \mathcal{C}$
- ev: $X^{\vee} \otimes X \to \mathbb{1}$
- coev: $\mathbb{1} \to X \otimes X^{\vee}$
- · zigzag identities

Full duality

 \mathcal{C} symmetric monoidal (∞, n) -category. $X \in \mathcal{C}$ is n-fully dualizable if:

- X is dualizable
- · ev and coev have left adjoints
- the units and counits have left adjoints
- ...up to level n − 1

Bordism Hypothesis

Conjecture (Baez-Dolan, Lurie)

Bord $_n^{fr}$ is free on an n-fully dualizable object.

$$F \colon \operatorname{Bord}_n^{\operatorname{fr}} \to \mathcal{C} \quad \iff \quad F(\operatorname{pt}) \in \mathcal{C}^{n-\operatorname{fd}}$$

For n = 1: Harpaz

Relation to Multiplicative Structure

Theorem (Keidar-Yanovski-N) *The Bordism Hypothesis is equivalent to*

$$\operatorname{Bord}_n^{\operatorname{fr}} \stackrel{\sim}{\otimes} \operatorname{Bord}_k^{\operatorname{fr}} \stackrel{\sim}{\longrightarrow} \operatorname{Bord}_{n+k}^{\operatorname{fr}}.$$

 $\Longrightarrow \operatorname{Bord}^{\operatorname{fr}}_{\infty}$ is an idempotent algebra.

Proof Idea

Lax Natural Transformations

 $\vec{\times}$ has an internal hom $\mathsf{Fun}^{\mathsf{lax}}(\mathcal{C},\mathcal{D})$:

- functors $F: \mathcal{C} \to \mathcal{D}$
- lax natural transformations $\alpha \colon F \Rightarrow G$

$$\begin{array}{ccc}
FX & \xrightarrow{\alpha_X} & GX \\
Ff & & \downarrow Gf \\
FY & \xrightarrow{\alpha_Y} & GY
\end{array}$$

• . . .

Lax Natural Transformations

- $\vec{\otimes}$ has an internal hom $\operatorname{Fun}^{\operatorname{lax}}_{\otimes}(\mathcal{C},\mathcal{D})$:
 - · symmetric monoidal functors
 - symmetric monoidal lax natural transformations
 - ...

dbl,R

C symmetric monoidal (∞, n) -category.

Lemma (Johnson Freyd-Scheimbauer)

$$\mathsf{Fun}^{lax}_{\otimes}(\mathsf{Bord}^{\mathrm{fr}}_1,\mathcal{C}) \simeq \mathcal{C}^{\mathsf{dbl},R}$$

$$\mathcal{C}^{dbl,R} \subset \mathcal{C}$$

dualizable objects and right adjoint (higher) morphisms. $\mathcal{C}^{\text{dbl},R}$ is $(\infty,n-1)$ -category.

Iterated dbl,R

$$((\mathcal{C}^{\mathrm{dbl},R})\cdots)^{\mathrm{dbl},R}\simeq \mathcal{C}^{n-\mathrm{fd}}$$
 \Downarrow
 $\mathrm{Bord}_{1}^{\mathrm{fr}}\ \vec{\otimes}\cdots\vec{\otimes}\ \mathrm{Bord}_{n}^{\mathrm{fr}}\simeq \mathrm{Bord}_{n}^{\mathrm{fr}}$

Final remarks

- Similar work by Naruki Masuda in categorical spectra.
- Extends to tangle categories.

Thank You!